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Message from theWorkshop Chairs
This volume contains the papers accepted at the Second International Workshop on FPGAs for Soft-
ware Programmers (FSP 2015), held in London, United Kingdom, September 1st, 2015. FSP 2015 was
co-located with the International Conference on Field Programmable Logic and Applications (FPL).
The aim of the FSPworkshop is tomake FPGA and reconfigurable technology accessible to software

programmers. Despite their frequently proven power and performance benefits, designing for FPGAs
is mostly an engineering discipline carried out by highly trained specialists. With recent progress in
high-level synthesis, a first important step towards bringing FPGA technology to potentially millions of
software developers was taken.
The FSP workshop aims at bringing researchers and experts from both academia and industry to-

gether to discuss and exchange the latest research advances and future trends. This includes high-level
compilation and languages, design automation tools that raise the abstraction level when designing for
(heterogeneous) FPGAs and reconfigurable systems and standardized target platforms. This will in par-
ticular put focus on the requirements of software developers and application engineers. In addition, a
distinctive feature of the workshop will be its cross section through all design levels, ranging from pro-
grammingdown to customhardware. Thus, theworkshop is targeting all thosewhoare interested in un-
derstanding the big picture and the potential of domain-specific computing and software-driven FPGA
development. In addition, the FSPworkshop shall facilitate collaboration of the different domains.
Topics of the FSPWorkshop include:
• High-level synthesis (HLS) and domain-specific languages (DSLs) for FPGAs and heterogeneous
systems

• Mapping approaches and tools for heterogeneous FPGAs
• Support of hard IP blocks such as embedded processors andmemory interfaces
• Development environments for softwareengineers (automated toolflows, design frameworks and
tools, tool interaction)

• FPGA virtualization (design for portability, resource sharing, hardware abstraction)
• Design automation technologies for multi-FPGA and heterogeneous systems
• Methods for leveraging (partial) dynamic reconfiguration to increase performance, flexibility, reli-
ability, or programmability

• Operating system services for FPGA resourcemanagement, reliability, security
• Target hardware design platforms (infrastructure, drivers, portable systems)
• Overlays (CGRAs, vector processors, ASIP- and GPU-like intermediate fabrics)
• Applications using HLS- or DSL-based approaches

We thank the authors who responded to our call for papers, the members of the program committee
and the external referees who, with their opinion and expertise, ensured a very high quality program.
Thank you all.

Tobias Becker
Frank Hannig
Dirk Koch

Daniel Ziener
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Application Accelerationwith the VectorBloxMXP
[Keynote Talk]

Guy Lemieux
VectorBlox Computing Inc., Vancouver, Canada

Abstract
ManyFPGAapplications have internal data parallelism that can be spedupby a variety of techniques. In
this talk,wewill explore howwecan speed themupwith vector processing. In particular, using a counter
vision application, wewill demonstrate several features in the VectorBloxMXP processor that we have
added to get massive speedup versus onboard ARM processors. This is done through a combination of
algorithmadaptations, data size reductions, clever use of conditional execution, and the addition of cus-
tom instructions. We will demonstrate how a software compilation approach using soft processors in
an FPGA can outperform hard processors.

Porting of a Particle Transport Code to an FPGA
[Keynote Talk]

Iakovos Panourgias
EPCC, University of Edinburgh, UK

Abstract
In this talk, wewill discuss how software programmers can use recent advances for porting applications
to FPGAs. We will discuss how writing code for FPGAs is hard. Using a particle transport code, we will
show how a software programmer can create an FPGA port without writing a single line of VHDL and
how to use performancemodels to estimate the runtime of the port. Wewill also show howminor algo-
rithmmodifications and data re-ordering and sizes affect performance of FPGA ports.
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Allowing Software Developers to Debug HLS
Hardware

Jeffrey Goeders and Steven J.E. Wilton
Department of Electrical and Computer Engineering
University of British Columbia, Vancouver, Canada

{jgoeders,stevew}@ece.ubc.ca

Abstract—High-Level Synthesis (HLS) is emerging as a main-
stream design methodology, allowing software designers to enjoy
the benefits of a hardware implementation. Significant work has
led to effective compilers that produce high-quality hardware
designs from software specifications. However, in order to fully
benefit from the promise of HLS, a complete ecosystem that
provides the ability to analyze, debug, and optimize designs
is essential. This ecosystem has to be accessible to software
designers. This is challenging, since software developers view their
designs very differently than how they are physically implemented
on-chip. Rather than individual sequential lines of code, the
implementation consists of gates operating in parallel across
multiple clock cycles. In this paper, we report on our efforts to
create an ecosystem that allows software designers to debug HLS-
generated circuits in a familiar manner. We have implemented
our ideas in a debug framework that will be included in the next
release of the popular LegUp high-level synthesis tool.

I. INTRODUCTION

High-level synthesis (HLS) allows a program written in
a software language (eg. C), to be automatically synthesized
into a hardware circuit. HLS is quickly gaining popularity,
particularly for FPGA programmable platforms, where it en-
ables their use as compute accelerators alongside traditional
processors [1], [2]. Both Altera and Xilinx have invested
heavily in this technology, and we anticipate that HLS-based
techniques may become the dominant design entry method
for FPGAs in the future. Intel’s recent announcement of their
acquisition of Altera further emphasizes the shift of FPGAs
from their glue-logic roots to a general-purpose algorithm
acceleration platform. This shift will further increase the
appetite for the fast turn-around design times and increased
accessibility promised by HLS.

In order for HLS to deliver its promised benefits, a compiler
is not enough. A complete ecosystem that provides the ability
to analyze, debug, and optimize designs is essential. To be use-
ful, this ecosystem has to be accessible to software developers.
Software developers think of their systems in terms of sequen-
tial execution of instructions with limited explicit parallelism;
this is in contrast to the actual FPGA implementation which
consists of interconnected dataflow components operating in
parallel across multiple clock cycles. As we will discuss in
this paper, this disparity creates a chasm, that if not bridged,
will significantly limit the effectiveness of analysis, debug, and
optimization; this will, in turn, limit the suitability of HLS in
designing most real systems.

Any debugging and optimization ecosystem is likely to be
associated with some amount of on-chip instrumentation. In
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Fig. 1. Classification of bugs in an HLS system

our previous publications, we have focused on the optimization
of this instrumentation (especially the optimization of on-
chip trace buffers) to maximize the amount of debugging
information that could be provided to the user [3], [4] while
minimizing overhead. In this paper, we take a step back
and focus on the user experience. We discuss what sort of
debug support we believe will make debugging HLS-generated
circuits feasible for software developers, and describe our
debug tool in which we have encapsulated some of these ideas.

Although we focus on functional debug in this paper, many
of the ideas also apply to optimization (performance debug).
The underlying challenges we will describe apply equally to
both performance and functional debug, and our tool could be
extended to support performance debug.

II. THE NEED FOR HARDWARE DEBUG

As shown in Figure 1, bugs can be classified into several
categories, each of which can be addressed using a different
debug flow. First, kernel-level bugs are errors in the algorithm
specification (for example, errors in loop bounds, incorrect
functions, or algorithmic errors). These bugs are typically
confined to one module, and are often easy to reproduce (since,
often, these bugs lead to incorrect behaviour every time the
circuit is run). Often, these bugs can be identified by porting,
compiling, and running the original C code directly on a
workstation; mapping to hardware is not necessary. In tracking
down these kinds of bugs, the designer can use software debug
tools (eg. gdb, Eclipse) that are already familiar to software
designers.

Copyright is held by the author/owner(s).
2nd InternationalWorkshop on FPGAs for Software Programmers
(FSP 2015), London, United Kingdom, September 1, 2015. 1



Fig. 2. Hardware view of a debug trace: Difficult for a software
designer to understand!

A second class of bugs are those that appear in the
generated RTL, even though the C code is correct. This may be
caused by errors in the HLS tool itself, or errors in how the the
HLS tool is used. FPGA vendors provide the ability to uncover
these bugs using a co-simulation approach where the C and
RTL code is simulated on a workstation [5]. Even if the code
is correct, this level of system verification is essential; until
HLS tools are fully mature, many designers will appreciate the
confidence they achieve from a successful RTL simulation.

Despite extensive kernel-level and RTL simulation-level
testing, there will always be some design errors that escape to
the hardware implementation. There are at least three reasons
this can happen. First, the software emulation will run much
slower than the target hardware (typically 20 to 200 times
slower [6]–[9]), limiting the thoroughness of tests that can be
performed. In a complex system, it is impossible to completely
test (or even enumerate) all corner cases. Second, this higher-
level testing will not uncover problems related to interactions
with the environment or with other modules in the system,
yet this is where we expect many bugs to occur. In many
large systems, HLS blocks are interfaced to legacy blocks
designed using RTL techniques; these interfaces may be mis-
understood by the software designer leading to subtle errors
that are difficult to track down. Third, the environment in
which the HLS block is used (for example, the input data
stream) may not be exactly as assumed during RTL simulation;
inaccuracies in the model of the environment may lead to bugs
that only show up when the block is connected to the real
environment. For these reasons, we expect that many errors
will escape simulation to the hardware design, and the only
way to find these errors is to debug the system in-situ, running
on an FPGA.

III. CHALLENGES FOR SOFTWARE ENGINEERS

The previous section made the case that certain types of
design errors can only be uncovered by running a hardware
implementation of the design. Debugging at the hardware
level, however, is difficult for a software designer. The primary
challenge during debugging an executing hardware design is
that of visibility; finding the root cause of observed incorrect
behaviour requires an understanding of the internal operation
of the system. However, while a system is running, only I/O
ports can be observed; internal signals, which are likely to
provide a lot more useful information, can not be directly
observed. To address this, there are commercial tools such as
ChipScope from Xilinx [10], SignalTap II from Altera [11],
and Certus from Mentor graphics [12]. These tools record
selected signals in on-chip memories (called trace buffers)
during the execution of the chip; at the end of the run, these
trace buffers can be interrogated, and the user can use this

information to understand the operation of the design, and
eventually uncover the root cause of incorrect behaviour.

The challenge with this approach is that these tools provide
visibility that has meaning only in the context of the generated
RTL hardware. A software designer typically would not have
an understanding of the underlying hardware; in fact, this is
the primary reason that HLS methodologies are able to deliver
high design productivity. A software designer views a design
as a set of functions, each consisting of sequential control-
flow code, while the underlying hardware consists of dataflow
components operating in parallel across multiple clock cycles.
Figure 2 shows a screenshot of the output of one of these
tools; in this example, the behaviour of signals is illustrated
using waveforms, a concept likely unfamiliar to many software
designers. Even if understanding a waveform diagram is not a
barrier, there may not be a one-to-one mapping between signals
in the waveform and variables in the original C code. Further,
since the HLS tool typically reorders instructions and extracts
fine-grained parallelism, it is often difficult for a software
designer to recognize the order of events and relate them to
the order of instructions in the original C code. All of these
factors make it very difficult for a software designer to use
these hardware-oriented tools.

IV. PREVIOUS WORK

To our knowledge, there have been two other debugging
tools produced for HLS circuits that allow source-level, in-
system debug. The first such tool was presented in 2003 [13],
and was designed to work in conjunction with the Sea Cu-
cumber HLS tool [14]. However, the debugger and HLS tool
both utilized the now obsolete JHDL framework and are no
longer supported or available for download. The debugger
allowed the user to step through the source code while the
circuit running on the FPGA was executed one cycle at a time.
It supported inserting breakpoints and inspecting source-code
variables. Our debugger builds on some of the ideas from this
work, and includes several new approaches, as explained in
the next section.

The second debugging tool produced was the Inspect
debugger [15] in 2014, and was designed at the same time
as our work presented in [3] and [4]. Since that time we have
worked with the authors to combine the ideas from their work
with ours into a single tool, which will be included in the next
release of the LegUp high-level synthesis tool [16].

Other work presented in [17], [18] has focused on adding
debug instrumentation to HLS circuits but does not include a
debugger tool.

V. OUR DEBUG FRAMEWORK: HLS SCOPE

In this section, we describe how we are addressing the chal-
lenges faced by software designers debugging HLS circuits.
We make our exposition concrete by presenting details of the
debug tool we have created, and relate each of our ideas into
features of this tool. Through this discussion, we will show that
it is indeed possible to create a tool that resembles a software
debugger, yet can be used to debug hardware designs running
on an FPGA.

Figure 3 shows a screenshot of our tool. In the following
discussions, we will refer to specific aspects of this diagram.
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To make the debugging ecosystem easily accessible to
software designers, we believe that any debug tool must
resemble debug tools that these designers already understand
(eg. gdb, Eclipse).1 This means that users should be able to
think of the design in terms of lines of code, and the state of the
system as C-level variables. As shown in Figure 3, we achieve
this in our tool; the source-level code is shown to the user (left
panel), along with the C-level local and global variables (right
panel).

In the left panel, the currently executing lines of source
code are highlighted. The parallel nature of the circuit means
that multiple C instructions can execute simultaneously. When
this occurs we highlight multiple lines, as shown in Figure 3.
This technique was also used in [13].

A. Gantt Chart

As shown in Figure 3, our tool presents a Gantt chart that
shows the execution of each line of code over time. This pro-
vides much of the same information as a waveform diagram, in
what we believe is a more software-friendly way. The diagram
provides a mechanism for the designer to understand the fine-
grained parallelism that has been uncovered by the HLS tool.
As an example, in Figure 3, the assignments to beg[0], end[0],
and the initialization operation of the while loop are started
during the same cycle, and this is shown graphically in the
Gantt chart. Similarly, some instructions may take more than
one control step (in the hardware, this corresponds to more

1Indeed, in future versions of the tool, we may investigate how we can
integrate our techniques into Eclipse rather than providing a separate tool.

than one clock cycle, but a clock cycle is abstracted as a
control step in our tool). Long operations such as divides, or
instructions that operate on arrays, typically take more than one
control step; examples of the latter can be seen in Figure 3.
The boxes of the Gantt chart represent individual instructions
of the underlying intermediate representation (IR), which is
explained further in Section V-D.

Note that in the presence of compiler optimizations, the
Gantt chart may not be as straightforward as that in Fig-
ure 3; we discuss the impact of compiler optimizations in
Section V-E.

B. Debug Modes

Software designers expect to able to set breakpoints and
single-step their design, and are accustomed to full visibility
into the value of any variable at any point in the program.
Yet, as described above, finding certain types of bugs requires
running the circuit at-speed in-system. Providing enough in-
frastructure (trace buffers and associated logic) to provide full
visibility into all signals in a hardware design running at-speed
would require too much overhead to be practical. To address
this, we have implemented two different debug modes: (1) live
mode, in which the user can have full visibility, but does not
run the circuit at speed, and (2) replay mode, in which the user
can run the circuit at speed, but only has full visibility for a
portion of the execution. Each of these is described below.

1) Live Mode: In the live mode, the system operates very
much as a software debugger. The user can create breakpoints
(limited by the number of hardware breakpoint units included

3
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in the instrumentation) and single step through the code. Upon
hitting a breakpoint, or completing a single step, the tool
disables the controlling finite state machine (FSM), essentially
pausing the system. While paused, the user can retrieve the
value of all variables stored in on-chip memories (right pane
of Figure 3).

2) Replay Mode: Debugging using the Live Mode involves
starting and stopping the circuit during debug, similar to the
technique used in [13]. This is not conducive to running the
circuit at-speed. The Replay Mode provides the ability to run
the circuit at-speed while preserving a software-like debug
experience. We believe that the Replay Mode is likely the most
important feature in our framework and best illustrates how the
software and hardware worlds can be bridged.

This mode operates as follows. While in Live Mode, the
user can set a breakpoint and run the circuit to the breakpoint.
As the circuit runs, instrumentation added to the circuit records
the changes to signals as well as the control flow executed by
the program (these values are stored on-chip in trace buffer
memories). After the program hits the breakpoint, the values
in the trace buffer are read into the debug tool, and the user
can enter the Replay Mode. While in Replay Mode, the user
can still single-step and set breakpoints as before, however,
all variable values and control flow information is obtained
from the trace buffer data rather than the live values from
the chip. In this way, the user can observe what the chip
did during the at-speed run, while maintaining a software-like
debug interface. In addition to single stepping, the user can use
a slider to move ahead further in the buffer, as shown in the
top-right of Figure 3. Interestingly, the slider can also be used
to step backwards in time, providing the illusion of running
the chip backwards. We anticipate that this feature will be
important as users wish to “work backwards” to determine the
root cause of unexpected behaviour. In fact, the technique of
working backwards is already used in the software domain;
examples include gdb’s Reverse Debugging and Microsoft
Visual Studio’s IntelliTrace.

Note that the Live Mode requires on-chip trace buffers and
associated logic to be added to the circuit. Because on-chip
resources are limited, we can only store data for a limited
number of instructions; we refer to the length of code for
which data can be stored as the Replay Window. Within the
replay window, we can provide a complete control-flow trace,
allowing the user to observe which instructions are active for
each execution step. Any variables that are updated within
the replay window are available for inspection, after the point
they are updated. Their value is unknown prior to the first
update within the replay window. To handle the case where a
variable is never updated during the replay window, we include
instrumentation to provide the debugger with access to the
memory controllers in the circuit. This allows us to read the
value of a variable directly out of memory. While in Replay

Mode, the user can step forwards and backwards through all
instructions in the Replay Window, but can not step outside it.
If the user wishes to go outside the Replay Window, multiple
debug iterations are required as shown in Figure 4.

In our previous publications [3], [4], we present efficient
buffer structures as well as methods of effectively compressing
control flow and data information before storing it in the buffer.
Those papers show that it is possible to record, on average,
control and data information for 4322 lines of C code for
each 100Kb of on-chip memory used for trace buffers. We
could further reduce this by only recording selected signals or
using off-line reconstruction methods; however, we have not
yet investigated this further.

We refer the readers to [3], [4] for further details on
the debug instrumentation, including data on execution trace
length, area overhead, and impact on operating frequency.

C. Instruction-Level Parallelism

It is important to note that there is a significant difference
between single step in our framework and single step in a
software debugger. Single step in a software debugger will
typically advance one source code statement. A single step in
our framework may advance through multiple instructions at
the same time, if those instructions are mapped to hardware
that execute in the same clock cycle. As an example, in
Figure 3, if the system is advanced one “instruction” beyond
the red vertical line, both the assignment to piv and part of the
(L < R) check will be performed. Because this is hardware,
and both are mapped to the same clock cycle, it is not possible
to decouple these two operations and only single step through
one of them. It may be possible to address these types of
situations by creating a tool that modified the user circuit
to either temporally separate these two operations or provide
selective gating to each operation, however, that would result
in significant changes to the user circuit, meaning the circuit
being debugged may be very different than the original circuit.

In [13] the authors explored another approach. They pro-
vided virtual serialization, making it appear to the user that the
statements were executed serially, when in reality they were
executed in parallel in the hardware. Indeed this makes the
debugger behave more like a traditional software debugger;
however, this hides the parallelism from the user, and prevents
them from restructuring their C code to explore different fine-
grained parallelism optimizations.

D. IR Instructions

As shown in Figure 5, most HLS compilers compile
software to hardware in several stages. First, C-to-C transforms
such as loop restructuring are often performed, to make the
C code more amenable to acceleration. The code is then
often converted to an Intermediate Representation (IR) which
resembles assembly language; several IR instructions are typi-
cally associated with each C operation. Optimizations are then

12
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Fig. 6. Gantt chart showing loop unrolling optimization.

Fig. 7. Gantt chart showing code reordering optimization

performed and hardware is constructed directly from the IR
representation.

Ideally, the software designer should be sheltered from the
IR, and should not have to know of its existence. This is similar
to how someone developing software should not have to know
about the underlying assembly language of their compiled
software. We anticipate that there are several reasons, however,
that the HLS designer might want to inspect and understand
the IR. First, C instructions often take multiple control steps,
and it may sometimes become important to understand when
primitive operations occur (this may be especially important
when debugging multi-threaded applications). Second, during
performance optimization, it may become important to un-
derstand why certain instructions take longer to execute than
others; this information could be used to restructure the C
code to lead to different fine-grained parallelism optimizations.
Third, this information could be used by HLS tool vendors to
help them as they optimize and debug their own compilers.
For all these reasons, we have elected to expose the IR to the
user. As shown in Figure 3, the bottom panel of the screen
shows the IR for the executing instructions.

E. Compiler Optimizations

Most HLS tools provide the ability to select the level of
optimization applied to the code before hardware is generated.
For HLS tools built around the LLVM framework, the user
can specify the familiar -O0, -O3, etc. flags. The higher the
level of optimization, the more restructuring of the code that
is performed before hardware is built.

Debugging optimized code (such as generated by the -O3
flag) is notoriously difficult. Because of this, when designing
software, it is common practice to debug using the -O0
(unoptimized). We believe that this strategy does not work well
for HLS-generated circuits for two reasons. First, changing
the level of optimization will significantly change the timing
of the resulting circuit. Since many of the bugs we anticipate

are in the interfaces between blocks, changing the timing may
result in significantly different behaviours. Thus, we believe
that if the “-O3” version of a circuit is going to be “shipped”
it is important to debug the “-O3” version of a circuit directly.
Second, in many cases, we have found that compiling with
“-O0” leads to much larger circuits, some of which would not
fit on the target FPGA, making on-chip debugging impossible.
This is different than software, in which as long as the program
fits in (virtual) memory, it can be debugged.

Because of these reasons, we have designed our tool such
that it can be used to debug optimized circuits. This has
two implications. First, when optimizing circuits, variables are
sometimes stored as registers in the datapath rather than in
local memories. This requires a change in the instrumentation
(as is discussed in [4]), however, it does not necessarily impact
the user experience (unless variables are optimized away all
together). Second, it means that the temporal relationship
between various instructions may vary greatly; the result of
a single-step may not be intuitive, since several instructions
that are not together in the original program are executed out-
of-order or simultaneously. We believe that it is important to
provide the user this level of visibility (rather than abstracting
the sequencing to program order) since understanding the
actual order of execution of instructions may be very important
when debugging block-level interfaces or other timing-related
problems.

Figures 6 and 7 provide examples of how the Gantt chart
aids users in debugging optimized code. In Figure 6 a sorting
operation is called 10 times in a loop. The optimizing compiler
has completely unrolled the loop and replaced the code with
10 subsequent calls to the function. In Figure 7, the compiler
has performed code reordering optimizations. In this case, the
two instructions immediately after the if block are independent
of the contents of the if block and are executed before it. In
both cases the Gantt chart helps the user in understanding the
optimization.

VI. EXTENDING OUR FRAMEWORK

Although our debugging tool has been designed for use
with the LegUp tool, we have designed it in a modular
fashion, such that it can be extended to support other HLS
tools, or expanded to explore new techniques for debugging
HLS circuits. Figure 8 provides a diagram of the software
organization of our tool.

At the heart of our tool is the Debug Manager which
coordinates the debugging session. It tracks the current state
of the design, and provides an API to control and observe the
design. It generates signals when events occur in the circuit,
such as when the state of the circuit changes or a breakpoint
is encountered. The debug manager provides a Backend API,
which allows for multiple backends to be added to the system
to support different execution devices. For example, initially
we supported a Live mode, which interacts with the FPGA,
and a Replay mode, which uses the values from the trace
buffers (both were previously described in this paper). Using
the backend API we were able to very easily add a third
execution mode, simulation-based execution using Modelsim.
The backend API abstracts away the details of the device from
the debugger tool. This abstraction could be used to test out
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Fig. 8. Organization of our HLS-Scope debugger tool.

different techniques of debug instrumentation, or circuits from
different HLS tools, without needing to modify other parts of
the debugger tool.

The Debugger GUI, written in Python+Qt, provides a
visual overlay on top of the Debug Manager. It issues requests
to the Debug Manager, such as single-stepping, obtaining the
current state of the circuit, or reading variable values. The GUI
could be replaced with a different tool, such as a command-line
interface, binary library, or Eclipse plug-in without needing to
modify the rest of the system.

The final piece of the system, and perhaps the most
essential is the Debug Database. This is a MySQL database
that contains the details of the user’s design, and was adapted
from that in [15]. It is automatically populated during the HLS
synthesis process. It keeps track of entities in the source code
(functions, lines of C code, IR instructions, variables, data
types, etc.), entities in the produced circuit (modules, FSM
states, signals, memories, etc.), and the relationship between
them. To port our debugger to another HLS tool, it would be
necessary to modify the HLS flow to populate this database.

Currently, the debugger software connects to the FPGA
via UART; however, in both the instrumented hardware and
the debugger tool, the UART logic is modularized, allowing it
to be replaced with other communication methods.

One limitation of the current tool is that it is limited
to single-threaded software; although it handles fine-grained
instruction-level parallelism, it does not support coarse-
grained, thread-level parallelism that is emerging in the latest
HLS tools. We plan to address this in future work.

VII. CONCLUSIONS

High-level synthesis is emerging as a mainstream design
methodology, allowing software designers to target hardware
implementation. As part of the HLS design process, software
designers need the ability to debug their hardware systems,
using debugging tools and methods familiar to them. In this
paper we have presented HLS-Scope, our source-level debug-
ger for the LegUp HLS tool. This tool is targeted to software

designers, and provides a familiar debug interface, allowing
them to single-step through their source code, place break-
points and inspect variables. We include additional features
such as a Gantt chart of the HLS scheduling and information of
the underlying IR instructions to help bridge the gap between
the sequential software and the optimized, parallelized circuit.
The debug tool is open-source, modularized for extension to
other applications, and available in the next release of LegUp.
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Abstract—We present a tool flow and results for a model-
based hardware design for FPGAs from Simulink descriptions
which nicely integrates into existing environments. While current
commercial tools do not exploit some high-level optimizations, we
investigate the promising approach of using reusable subcircuits
for folding transformations to control embedded multiplier usage
and to optimize logic block usage. We show that resource
improvements of up to 70% compared to the original model
are possible, but it is also shown that subcircuit selection is a
critical task. While our tool flow provides good results already,
the investigation and optimization of subcircuit selection is clearly
identified as an additional keypoint to extend high-level control
on low-level FPGA mapping properties.

I. INTRODUCTION

The use of domain-specific modeling tools like Mat-
lab/Simulink is a common way to describe (and test) data flow
dominated applications, commonly denoted as model-based
design. It has proven successful in automatic code generation
which is the de-facto standard, e. g., in the automotive domain
for many years. Up to 80% of the processor code in todays
embedded control units is generated from Matlab/Simulink [1].
The increasing demand for processing high sample frequencies
recently lead to performance requirements that exceed the
capabilities of embedded CPUs. FPGAs provide a solution
for this problem as they yield the required computational
power. However, typical sample frequencies are still much
lower than the FPGAs’ system clock frequency. This opens
the opportunity to reduce FPGA resources by computing
parts of the design using time-multiplexing while sharing the
computation modules.

A well known method to automatically transform a parallel
data flow graph (DFG) into a sequential circuit is folding [2].
During the folding transformation, common operators like,
e. g., multipliers are implemented only once and shared by
using multiplexers and additional registers. These resources
and the required controller introduce an overhead which has
to be lower than the resources saved due to sharing to gain
any benefit [3]. As the number of multiplexers directly scales
with the number of inputs of shared operands, an overhead
reduction could be obtained when operations are combined to
larger subcircuits instead of equipping each single operation
with multiplexers and registers. In principle, the same solution
could be found with the right operator selection, scheduling
and binding, but for this the right parameters have to be known.

The use of common subcircuits instead removes multiplexers
and registers per construction. A subcircuit as defined in
this work corresponds to a subgraph of the DFG. The more
frequently a subcircuit occurs, the more resources can be
saved due to sharing. However, the larger a common subcircuit
is, the smaller is typically its frequency of occurrence. In
addition, several independent common subcircuits may exist
in the design which may even partly overlap, leading to a
large design space. The task is thus related to a subgraph par-
titioning problem based on sets of isomorphic subgraphs. The
target function on the other hand is based on implementation
costs which are not directly related to individual subgraphs
or to partition properties like size or number. Besides this,
subcircuits can be used to reach a resource optimal point in
the design space which meets the throughput requirements.

The idea behind our investigation is to apply well known
high-level transformations to the Simulink description target-
ing resource reductions at the lowest register transfer/FPGA
level. We present a tool flow which automatically utilizes the
folding transformation to share arbitrary common subcircuits
and show the benefits for this approach by a design space ex-
ploration of several benchmark circuits. The main contribution
of this work is an extensive analysis of the results which were
generated during this exploration. Besides this, we show that
the results obtained with our tool flow are always better in
terms of slices than the folding transformations of the Matlab
HDL coder [4], which was taken as state-of-the-art reference
in this work.

II. BACKGROUND

The identification of common subcircuits, also known as
subcircuit recognition [5], subgraph enumeration [6]–[8] or
clone detection [1], is a well known problem which appears
in many different disciplines and is akin to the subgraph
isomorphism problem which is known to be NP-hard [6].
Powerful methods have evolved in the last three decades. A
good introduction into the topic can be found in [5]. However,
the beneficial use of common subcircuits in synthesis is still
not well understood. Common subcircuits have been used in
high-level synthesis (HLS) tools targeting behavioral input lan-
guages like C [7]–[10]. A tool flow that enumerates subgraphs
and re-uses them in the xPilot HLS tool was presented by
Cong and Jiang [7]. They report FPGA resource reductions
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by about 20% on average. The sharing of single operations
as well as common subcircuits (called composite operators or
patterns) within the high-level synthesis (HLS) tool LegUp is
analyzed in [10]. The sharing is limited to two operations with
non-overlapping life times, i. e., one physical unit is used to
compute two operations in the algorithm when no additional
registers are required to store intermediate results. A greater
benefit is reported when common subcircuits are used instead
of single operations. They also analyzed the impact of the
FPGA architecture and obtained area reductions from 7 to
12% by using subcircuit sharing.

Common subcircuits also have been used in folding to
reduce the computation time of the folding transformation
[11]. There, the overall system as well as a common subcircuit
are folded separately which is called hierarchical folding. The
result is identical to the folding of the complete circuit for
single operations, but reduces the complexity for M identical
blocks from O(M3) to O(M) (assuming the subcircuits are
known in advance) [11]. A hierarchical synthesis methodology
is also described in [9]. There, resource sharing is performed
independently at each hierarchy level including controllers. To
the best of our knowledge, common subcircuits were not used
so far for resource reduction within the folding transformation.

III. FOLDING TRANSFORMATION

The folding transformation [2] is a systematic way to realize
the time-multiplexed reuse of identical operations like e.g. ad-
ditions and multiplications. In the implementation considered
in this work, this can additionally be combinations of single
operations to larger subcircuits which can be found more than
once in the circuit. A common subcircuit or operation that is
shared using folding is denoted folding core in the following.
A circuit may consist of several common subcircuits which
may be mutually exclusive, i. e., a subset of subcircuits may
be selected as folding cores. Suitable common subcircuits used
in the design space exploration are selected by the user in this
work. This step could be automated by one of the subcircuit
recognition methods discussed in [1], [5], [7], [8].

The folding procedure is illustrated by an example Simulink
model of a discrete PI-controller as shown in Fig. 1(a). The
possible folding cores could be a single product or a single
addition, denoted as {Prod} and {Add} or the common subcir-
cuit {Prod,Add} as highlighted in Fig. 1(a). In the next step,
a scheduling is required to determine the time step in which
each subcircuit will be executed. This is important to provide
the right input data at the right time in the time-multiplexed
circuit. In the given example this could be {Prod 2,Add 1}
in the first time step and {Prod 1,Add 2} in the second time
step for the folding with common subcircuits. The minimal
number of required time steps which leads to a valid solution
is called the folding factor N . In the best case it is equal to
the number of identical subcircuits.

The scheduled processing times can be verified by the help
of the folding equation, which determines the delay D in
number of clock cycles between two nodes U and V in the
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Fig. 1: Example of a PI controller described in Simulink

folded circuit:

D(U
e−→ V ) = Nwe − Pu + v − u ≥ 0 (1)

where we is the delay in number of clock cycles of the edge
e from nodes U to V in the original DFG, Pu is the latency
of U and u and v are the scheduled execution times of U und
V , respectively.

Now, all the common subcircuits can be replaced by their
corresponding folding cores which are equipped with multi-
plexers at their inputs. Each multiplexer input may require a
number of additional registers (D) as given by the folding
equation. Note that this may lead to a more complex wiring,
but in our experiments this was not a limiting factor. The
resulting folded PI controller circuit using the folding core
{Prod,Add} is shown in Fig. 1(b).

To obtain a benefit from folding, the resulting circuit size Sf

of the N times folded circuit has to be smaller than the size So

of the original circuit. Both circuits can be separated into the
resources of the folding cores (Sfolding core), non-folded parts
(Sremain) and the overhead due to folding (Soverhead), leading to
the condition:

Sf < So (2)
Soverhead + Sfolding core + Sremain < NSfolding core + Sremain (3)

Soverhead < (N − 1)Sfolding core (4)

Clearly, the overhead has to be smaller than the size of the
saved folding cores. Thus, selecting a large folding factor and
a large folding core should be worthwhile. But the capability
to maximize both is limited by the structure of the original
circuit, so a tradeoff has to be found.
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Fig. 2: Overview: Implemented folding transformation flow

IV. TRANSFORMATION FLOW

In this section, the transformation flow of the implemented
automatic folding transformation tool is presented. We perform
structural transformations at the Simulink level to get the
folded result. An overview is given in Fig. 2. The input of
the transformation flow is the Simulink model of the design
which is to be optimized. In the first step the model is
transformed into an object oriented Matlab data structure by
a tool called ManTrAS (Matlab analysis and Transformation
API for Simulink) [12]. It provides an easy way to work with
the data representing a Simulink model in order to analyze
the model and to do the required transformations. Moreover
a ManTrAS graph can be transformed back into a Simulink
model. After the back-transformation everything which could
be done with the original Simulink model can be applied to
the folded one. This includes the simulation using the original
test bench, HDL code generation using Mathworks’ HDL
Coder and validation of the folded model which is an essential
advantage of this approach.

The next step is the mapping of the folding cores to the
corresponding blocks in the ManTrAS graph. This is done
by putting all blocks which belong to one folding core into
a Simulink subsystem which can be identified by having a
specific type of folding core. In contrast to other approaches
we do not only consider one type of folding core but also a
set of different non-overlapping folding cores for the folding
transformation.

Since the former parallel design will be processed in a
sequential time-multiplexed way after the transformation, the
folding cores have to be assigned to time steps. This is
currently done by a general list scheduling with support
of resource constraints and multi-cycle operations [13]. The
resource constraints are used to limit the available folding
cores to one per clock cycle to force the schedule to be valid
for the time-multiplexing. The latency Pu of an operation is
treated as a multi-cycle (blocking) operation in the scheduling.
This guarantees that v− u is always greater or equal than Pu

and, thus, the folding equation result is always positive or zero.
The corresponding delays are inserted at the corresponding
multiplexer input. A single control unit (a mod-N counter)

is inserted which controls the multiplexers to select the right
input at the scheduled time step.

In addition to the original folding transformation, we sup-
port folding cores with internal states. For that, pipeline
interleaving is applied to each folding core by simply replacing
each register in the folding core by N registers [2], [11].

V. EXPERIMENTAL SETUP

This section comprises an experimental design space ex-
ploration and evaluation of a benchmark set with different
folding cores selected for the folding transformation. The
results were automatically generated using the presented trans-
formation flow. The evaluation is done with four commonly
used applications in the domains control engineering and
digital signal processing. The following applications have been
chosen, implemented as functional Simulink models with a 32
bit fixed point precision and can be accessed online [14]:

A) 16 tap finite-impulse response (FIR) filter
B) Park-Clarke transformation (PCT)
C) Triple PID controller (TPID)
D) Infinite-impulse response (IIR) filter from [2]

While the FIR and IIR filters are well known, the Park-
Clarke transformation is a combination of the alpha-beta
transformation [15] and the direct-quadrature-zero transfor-
mation [16]. It is an important transformation in automotive
controls and is used for the observing part of multiple-phase
brushless DC motors. It consists of several sine look-up tables,
additions/subtractions and multiplications.

The Triple PID controller is a design which implements
three standard discrete PID controllers in parallel using the
rectangular method for intergrals and differentials.

We distinguish between four implementation cases to com-
pare the different folding strategies: The first case is the
original unfolded design as reference. The second case is
the single operation folding, which represents the folding
strategy to share resource intensive single operations like, e. g.,
multiplications. The third case is the folding using common
subcircuits as folding core, which was the main target of
our exploration. The intention is mainly to show the benefits
compared to the single operation folding. The HDL Coder
resource sharing is taken as the last case, because it is a
state-of-the-art commercial solution. The selected cores and
their number can be found in TABLE I following the notation
introduced in Sec. III. For example, in the FIR benchmark
with folding factor N = 5 we reduce 5 cores each consisting
of 2 delays, 2 products and 2 adders to 1 core and 2 cores
consisting of 1 delay, 1 product and 1 adder to 1 core. This is
denoted as 5{2delay,2prod,2add}, 2{delay,prod,add}. In some
cases different folding cores are selected while the folding
factor is the same, which results in different realizations for
the same folding factor.

The folding transformation was performed for each selec-
tion using the presented flow, resulting in a folded Simulink
model. This model was verified within the Simulink environ-
ment by a direct comparison to the input/output-behavior of
the original unfolded model. After this step VHDL-Code was
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TABLE I: Folding cores selected for the evaluation

appl. folding cores

N cores N cores

FIR

2 2{7delay,7prod,7add} 14 14{prod,add,delay}

2 2{delay,prod} 14 14{prod,delay}

3 3{4prod,4add, 4delay},
2{2prod,2add,2delay}

15 15{prod}

4 4{3prod,3add,3delay},
3{prod,add}

15 15{add}, 15{prod}

5 5{2delay,2prod,2add},
2{delay,prod,add}

15 15{prod,add}

7 7{2prod,2add,2delay}

PCT

2 2{1conv,5sub, 3sin,3prod} 6 6{sin}, 6{prod}, 2{prod},
6{sub}, 4{sub}

2 2{sub,sin,prod},
2{sub,sin,prod},
2{sub,sin,prod}

6 6{sin}, 6{prod}, 2{prod},
3{sub}, 3{sub}, 2{sub},

2{sub}

3 3{const,sub,sin,prod},
3{sub,sin,prod}

6 6{sub,sin,prod}, 2{prod},
4{sub}

6 6{sin,prod} 6 6{sin}

6 6{sin}, 6{prod}, 2{prod} 6 6{sub,sin,prod}

TPID

3 3{sub,prod,add} 9 9{prod}

3 3{single PID} 9 9{prod}, 9{add}, 6{sub}

3 3{P}, 3{I}, 3{D} 9 9{prod,add}

6 6{sub,prod}

IIR

2 2{prod,add,add} 4 4{add}, 4{prod}

2 2{prod,add,prod,add} 4 4{prod}

2 2{prod,add}

generated using HDL Coder (v2.2) and functionally verified
with ISim. Finally the VHDL code was synthesized for a
Virtex 4 FPGA (xc4vlx200-10-ff1513) to get the required slice
and DSP block count as well as timing information. The
settings for DSP usage where set to Auto. The HDL Coder
was used with different resource sharing factors which can be
provided by the user to get a resource-latency tradeoff.

Special care has to be taken when constant values are
included in the design. In such cases the constants may
have an impact on the resulting design size, because differ-
ent optimizations can be performed by the tools during the
synthesis process. As we want to consider the general case
we prevented the constants from being trimmed by replacing
them by external inputs before synthesis. This means that the
results in TABLE II and Fig. 3 and 4 represent an upper bound
for the design sizes as for specific constants (like power-of-two
values), less resources are possible.

VI. RESULTS

A summary of the results can be found in TABLE II.
The required resources of the unfolded (original) design are
compared to the resources of the solution generated with the
proposed folding flow using common subcircuits or single
operation folding, which lead to the largest slice and DSP
block reduction (best fold.) for the specific benchmark. The
corresponding data points of these and the worse solutions can

TABLE II: Comparsion between original and best folded
design and between common subcircuit and corresponding
single operation folding for the example designs

FIR filter PCT Triple PID IIR filter

Slices DSPs Slices DSPs Slices DSPs Slices DSPs

original 663 64 12910 66 3492 96 135 16
best fold. 485 6 3938 19 1319 40 393 8

savings (%) 26 91 70 71 62 58 -191 75

single op. 1474 4 3938 19 1984 16 621 4
comm. sub. 485 6 4242 19 1731 16 428 4

savings (%) 67 -50 -7,7 0 13 0 31 0

be found in Fig. 3. Moreover, the best result using common
subcircuits (comm. sub.) is compared to the result of the
corresponding single operation folding (single op.), as the
investigation of their relation is the motivation of our work. A
general observation is that a large amount of slice resources
and DSP blocks can be saved compared to the original model
and that the savings of common subcircuit folding typically
surpass the savings of single operation folding.

In the following subsections specific observations for the
different benchmarks and figures of the explored design space
are provided (all numbers refer to TABLE II).

A. 16 Tap FIR Filter

The results for the different FIR solutions can be found in
Fig. 3 (a). For this very regular design the best solution can be
achieved by a folding factor of 14 for the number of required
slices and by a folding factor of 16 for the number of required
DSP blocks. In order to achieve a slice reduction, the use of the
largest common subcircuit (14{prod,add,delay}) is beneficial.
The fact that the largest folding factor is leading to the smallest
number of required DSP block is a general observation which
holds for all analyzed benchmark circuits (A-D). For the
FIR benchmark, there are many cases, especially with single
operation folding, in which folding is leading to a much higher
resource consumption compared to the unfolded design. This
is the result of a large overhead compared to the saving which
can be achieved by resource sharing for this rather small
design. The best folded solution saves 26% of the required
slices and 91% of the required DSP blocks compared to
the original design. In the case of the FIR filter, common
subcircuit folding is the only way to save slice resources.The
corresponding single operation folding is not beneficial as the
slice overhead is about 1000 slices, which exceeds the slice
count of the original model.

B. Park-Clarke Transformation

In the Park-Clarke Transformation example, the best so-
lution can always be found with the largest folding fac-
tor. The analyzed cases have an almost identical slice con-
sumption for identical folding factors as it can be seen in
Fig. 3 (b). The HDL Coder was not able to perform any
resource sharing independent of the given sharing factor. By
application of our transformation flow on this rather large
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Fig. 3: Results for slice and DSP block usage for all benchmarks

example we could achieve savings of about 70% for slice
and DSP usage. The best solution for the single operation
(6{sin},6{prod},2{prod},6{sub},4{sub}) and common subcir-
cuit (6{sub,sin,prod},2{prod},4{sub}) folding have nearly the
same slice consumption. This results from nearly identical
folded solutions. In one case we define the common subcircuit
(6{sub,sin,prod}) and in the other case each component of
this common subcircuit is selected as a single operation
(6{sin},6{prod},6{sub}). Based on a good scheduling for the
single operation case, the architecture of the common subcir-
cuit is reconstructed automatically during the transformation
flow. The multiplexers in the single operation case thus have
the same input at each port and can be replaced by a wire
during synthesis.

C. Triple PID Controller

The results for the Triple PID controller can be seen in
Fig. 3 (c). The best case in terms of slice usage is not the
case with the largest or nearly largest folding factor for this
example. This can be explained by the fact that very large
folding cores can be found in the best cases with only one

input, leading to only one input multiplexer. The low overhead
on the one side is further enhanced by the large resource
saving on the other side, because of the large folding cores.
In this case the folding core size was the defining element
in the tradeoff between folding factor and folding core size
(cf. (4)). The comparison of single operation (9{prod}) and
the corresponding common subcircuit (9{prod,add}) folding
in TABLE II shows again that it is beneficial to search for
larger common subcircuits rather than folding around single
operations.

D. IIR Filter

The last example consists of only four multiplications and
four additions and supplies only few folding alternatives.
The results are plotted in Fig. 3 (d). The unfolded design is
always the best solution in terms of slices, but choosing the
multiplication and addition as folding core can significantly
reduce the required DSP blocks. The HDL Coder resource
sharing result is only able to save one out of four multipliers
which leads to a larger slice overhead for time-multiplexing
and no savings in DSP block consumption.
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E. Resource Performance Tradeoff

With a set of different folding cores, leading to differ-
ent folding factors and different latencies for data sample
processing, our tool can deliver a tradeoff between resource
consumption and latency of the processing of one data sample.
The evaluated data points of the FIR filter example were used
in Fig. 4 to show the number of required slices over the
computation time N · Tmin, where Tmin denotes the minimal
clock period obtained from the timing analysis. A designer
with specific latency or area limitations could pick the best
possible solution very easily. For a sample period requirement
the best solution in terms of slice usage can be found as the
point at the very bottom which is left of the latency limit and
for a slice limitation the best solution in terms of latency is
the leftmost point which is lower than the slice limit.

F. Summary

The experimental results show that it is beneficial in terms
of slice reduction to use common subcircuits instead of single
operations as folding cores. Besides the slice reduction the
selection of common subcircuits always leads to the best
results if low latency is required. The largest DSP block
reduction can be achieved by selecting the maximum folding
factor in all cases, which can lead to a large slice overhead
on the other hand. The relation of overhead and reduction
by folding factor and/or folding core size (4) could be seen
in some cases, but further investigations have to be done.
The subcircuit selection itself is a critical task and it has
a significant impact on the resulting design. However, the
design space exploration which is possible with the presented
transformation flow can help to find the best solution in
order to fulfill the application constraints. The design space
exploration considered the folding factor as well as the folding
core size. A change in the degree of sharing, i.e., varying
the amount of available folding cores was not analyzed, but
should be considered in future work, as it delivers an additional
optimization possibility.

VII. CONCLUSION

We presented an automated high-level transformation for
Simulink models targeting optimized FPGA implementations.
The resulting models can be used by standard tools to generate
VHDL code. We showed results only for four models but it
becomes evident that very large improvements can appear, up
to 70% in our examples. Using the tool flow, a design space

exploration concerning the folding factor and the folding core
inputs could be established and first results were analyzed
in this paper. The results clearly show the benefits of our
approach but also, that the selection of folding cores is a key
factor for the improvement of FPGA resource requirements for
any specific model: while the usage of embedded multipliers
can be directly controlled, logic block requirements depend
largely on the selected subcircuits.

Currently, different core combinations are selected by the
user, but the results indicate that there is a non-trivial depen-
dency between the model structure, the folding factor and the
subcircuits and their possible combinations. An algorithm for
subcircuit selection and combination is obviously necessary
to fully automize the process of defining reasonable folding
cores as input to our tool flow. The development of such an
heuristic and the definition of according selection criteria are
therefore the main targets of our future work.
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Abstract—Offloading compute intensive nested loops to execute
on FPGA accelerators have been demonstrated by numerous
researchers as an effective performance enhancement technique
across numerous application domains. To construct such acceler-
ators with high design productivity, researchers have increasingly
turned to the use of overlay architectures as an intermediate
generation target built on top of off-the-shelf FPGAs. However,
achieving the desired performance-overhead trade-off remains
a major productivity challenge as complex application-specific
customizations over a large design space covering multiple
architectural parameters are needed.

In this work, an automatic nested loop acceleration framework
utilizing a regular soft coarse-grained reconfigurable array (SC-
GRA) overlay is presented. Given high-level resource constraints,
the framework automatically customizes the overlay architectural
design parameters, high-level compilation options as well as
communication between the accelerator and the host processor
for optimized performance specifically to the given application.
In our experiments, at a cost of 10 to 20 minutes additional tools
run time, the proposed customization process resulted in up to
5 times additional speedup over a baseline accelerator generated
by the same framework without customization. Overall, when
compared to the equivalent software running on the host ARM
processor alone on the Zedboard, the resulting accelerators
achieved up to 10 times speedup.

I. INTRODUCTION

Offloading compute intensive nested loops to FPGA ac-
celerators has been demonstrated by many researchers to
be an effective solution for performance enhancement across
many application domains [1], [2]. However, the relatively low
productivity in developing FPGA-based compute applications
remains one of the major obstacles that hinder widespread em-
ployment of FPGAs [3]. To address this challenge, a number
of researchers have turned to the use of virtual FPGA overlay
architectures built on top of the physical FPGA configurable
fabric to help with improving design productivity through fast
compilation, good design portability and debugging support
[4], [5], [6], [7], [8], [9], [10], [11].

Despite the great advantages on design productivity, the
additional layer on top of the physical FPGA inevitably
introduces performance and resource consumption penalty.
An overlay must ensure that the overall FPGA acceleration
performance remains competitive. Otherwise, mapping the
loop kernels to the overlay based FPGA accelerators will not
be as useful. Therefore, the capability to customize the overlay
specifically to an application or a domain of application
becomes essential to the overlay based FPGA accelerator

design. However, navigating through a labyrinth of architec-
tural and compilation parameters to fine-tune an accelerator’s
performance is a slow and non-trivial process. To require a
user to manually explore such vast design space is going to
counteract the productivity benefit of the utilizing overlay in
the first place.

We have been developing in-house a soft coarse-grained
reconfigurable array (SCGRA) overlay based nested loop
acceleration framework targeting a hybrid CPU-FPGA system
called QuickDough, which allows rapid compilation from C
loops to FPGA with a library of pre-built overlay bitstreams
[10]. In this work, we mainly focus on automatically cus-
tomizing the overlay architectural parameters, exploiting loop
unrolling and hardware-software communication in combi-
nation with buffer sizing specifically to an application with
given high-level resource constraints. In particular, by taking
advantage of the regularity of the SCGRA overlay, a multitude
of design metrics such as performance and hardware consump-
tion can be accurately estimated using analytical models once
the overlay scheduling result is available. While the overlay
scheduling depends on much less design parameters, the over-
all customization framework can be dramatically simplified.
With both the efficient application-specific customization and
rapid compilation, the proposed design framework ensures
both high design productivity and high performance of FPGA
loop acceleration.

From our experiments, it took the framework 10 to 20
minutes to complete the loop accelerator customization using
our proposed two-step approach, which was up to 100 times
faster than an exhaustive search through the design space. With
customization, the resulting accelerators performed up to 5
times faster than a corresponding baseline accelerator before
customization. Overall, when compared to the performance
of the benchmark executed on the host ARM processor, the
resulting FPGA accelerators achieved up to 10× speedup.

II. RELATED WORK

Overlay architecture which is a virtual intermediate archi-
tecture overlaid on top of off-the-shelf FPGA is increasingly
applied as a way to address the productivity challenge.

Various overlays with diverse configuration granularities and
flexibility ranging from virtual FPGAs [4], [6], [5], array-
of-FUs [7], [8], [11], soft CGRA [9], [10], soft GPU [12],
vector processors[13], [14] to configurable processors or multi-
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core processors [15], [16], [17], [18], [19], [20] have been
developed over the years. SCGRA overlay provides unique
advantages on compromising hardware implementation and
performance for compute intensive nested loops as demon-
strated by numerous ASIC CGRAs [21], [22]. Most impor-
tantly, it allows both rapid compilation by taking advantage
of the overlays’ tiling structure [23] and efficient bitstream
reuse within the design iterations of an application [10], thus
it is particularly promising for high productivity nested loop
acceleration.

In addition, customizing the CGRA specifically for an
application or a domain of application provides promising per-
formance improvement while saving the hardware resource at
the same time as demonstrated in CGRA work targeting ASIC
design [24], [25], [26]. While CGRA customization on ASIC
is relatively limited due to the tape-out cost, CGRA overlays
allow more intensive architectural customization providing
just enough hardware to the target application or application
domains because of the FPGA’s inherent programmability. In
[27], Coole and Stitt proposed to provide the overlay with
limited flexibility instead of full configurability specifically to
a group of design. With this customization, the area overhead
was reduced significantly. The authors in [28] developed an
SCGRA topology customization method using genetic algo-
rithm and showed the potential benefits of the SCGRA overlay
customization. Nevertheless, the rest of the system design
parameters were not covered. In [2], the authors formalized
the loop acceleration on a regular processing array overlay
on FPGA. They focused on the hardware resource constrain,
IO bandwidth constrain and the loop parallelism partition
while processing architectural design parameters were not
included. In order to achieve both high design productivity
and high performance with low overhead, a complete nested
loop acceleration framework targeting CPU-FPGA system is
developed in this work. It supports intensive application-
specific customization including the overlay architectural cus-
tomization, the compilation customization and communication
interface customization for optimized performance.

III. NESTED LOOP ACCELERATOR DESIGN FRAMEWORK

By using a regular SCGRA overlay built on top of the phys-
ical FPGA devices, we have developed an automatic nested
loop acceleration framework called QuickDough. QuickDough
targets hybrid CPU-FPGA computing systems where the
FPGA is devoted to accelerating compute intensive loop kernel
and CPU handles the rest of the application. Figure 1 depicts
an overview of the design framework, highlighting the comple-
mentary accelerator generation and accelerator customization
paths.

By design, the steps along the accelerator generation path
are short and essential during rapid design iterations. Col-
lectively, they are able to generate FPGA loop accelerators
making use of a pre-built bitstream library in the order of
seconds [10].

Meanwhile, the focus of this paper is on the accelerator
customization path, which is relatively slow but is necessary
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Fig. 1. Automatic nested loop acceleration framework

for improving performance of the resulting accelerators on
a per-application basis. These steps automatically tunes the
design parameters including overlay architectural parameters,
compilation options as well as communication between the
FPGA accelerator and host processor specifically to a user
application under user constraints such as hardware resource
budgets. With the customized design parameters, HDL models
of the corresponding SCGRA overlay and their associated
drivers are then generated. Afterwards, the drivers will be used
by the software compiler while the FPGA accelerator will be
implemented and stored in the accelerator library, which can
be reused by the fast accelerator generation path in subsequent
compilations.

A. SCGRA based FPGA accelerator

Figure 2 shows the design of a typical SCGRA overlay
based FPGA accelerator. In the accelerator, on-chip memory
i.e. IBuf and OBuf are used to buffer the communication data
between the host CPU and the accelerator. A controller is
also presented in hardware to control the operations of the
accelerator as well as memory transfers. The SCGRA, which is
the kernel computation fabric, consists of an array of PEs and
it achieves the computation task through the distributed control
words stored in each PE. The AddrBuf stores all the valid IO
buffer accessing addresses of the computation. The current
implementation of a PE template is also presented in this
figure. At the heart of the PE is an ALU, which is supported
by a multi-port data memory and an instruction memory. Data
memory stores intermediate data during the computation while
instruction memory stores all control words that determines the
action of the PE. In addition, a global signal from the AccCtrl
block controls the start/stop of all PEs in the array.

B. Loop execution on the FPGA accelerator

Figure 3 illustrates how the loop is executed on the FPGA
accelerator. First of all, data flow graph (DFG) is extracted
from the loop and then it is scheduled on to the SCGRA
overlay based FPGA accelerator. Depending on how much
the loop is unrolled and transformed to DFG, the DFG may
be executed repeatedly until the end of the original loop. In
addition, data transfers for multiple executions of the same
DFG are batched into groups as shown in Figure 3. On the one
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#define L 10000

...

...
//Loop kernel
for(i=0; i<L; i++){
    c[i] = a[i] x b[i] 
}
...

Original code

// Group Size: G
#define L 10000
#define G 10

for(i=0; i<L/G; i++){
    To_FPGA(a[G], b[G])
    Group_Execution();
    To_Main_Mem(c[G])
}

Loop kernel

// Unrolling factor: 2
#define G 10
#define U 2

for(i=0; i<G/U; i++){
    DFG_Execution();
}

Group

#define U 2

for(i=0; i<U; i++){
    c[i] = a[i] x b[i] 
}

DFG

Fig. 3. Loop, group and DFG. The loop will be divided into groups. Each
group will be partially unrolled and the unrolled part will be translated to
DFG. IO transmission between FPGA and host CPU is performed in the
granularity of a group.

hand, this technique is used to reduce the number of batching,
which further helps to amortize the initial communication cost.
On the other hand, it also results in larger on-chip memory
overhead. The proposed customization framework can be used
to make the right design choices to achieve an optimal design.

C. SCGRA overlay compilation

With pre-built SCGRA overlay library and customized
overlay configuration, the corresponding FPGA accelerator
can be generated rapidly, which is also the basis of the
high-productivity loop accelerator design framework. Figure 4
presents the detailed SCGRA overlay compilation. With the
specified loop unrolling and grouping factor, DFG is generated
and scheduled to the SCGRA overlay of the accelerator.
After the scheduling, control words are extracted, and they
can further be integrated into the pre-built FPGA accelerator
bitstream creating the final FPGA loop accelerator bitstream.
The compilation process typically completes in a few seconds
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Fig. 4. Rapid SCGRA overlay compilation

as illustrated in [10] which is particularly important during
early application development phases.

IV. SCGRA OVERLAY BASED FPGA ACCELERATOR
CUSTOMIZATION

Application-specific customization provides unique oppor-
tunity to reduce the resource consumption and improve per-
formance of the resulting accelerators. However, taking the
system as a black box and exhaustively searching all the
possible configurations can be inefficient and slow. In this
work, by taking advantage of the regularity of the SCGRA
overlay based FPGA accelerator, we can reduce the complex
customization problem to a much simpler sub design space
exploration (DSE) together with a simplified search problem.
With the customization, optimized application-specific nested
loop accelerator can be produced efficiently.

A. Customization problem formulation

In this section, we will formalize the customization problem
of the nested loop acceleration on an SCGRA overlay based
FPGA accelerator. Various design constraints including energy
consumption and hardware resource consumption can be used
while hardware resource consumption is taken as an example
here.

TABLE I
DESIGN PARAMETERS OF NESTED LOOP ACCELERATION 1

Design Parameters Denotation
Nested Loop
Compilation

Loop Unrolling Factor u = (u0, u1, ...)
Grouping Factor g = (g0, g1, ...)

Overlay
Configuration

SCGRA Topology 2D Torus, fixed
SCGRA Size r × c
Data Width W0

Data Mem D0 ×W0

Input Buffer D1 ×W0

Output Buffer D2 ×W0

Instruction Mem D3 ×W1

Input Address Buffer D4 ×W2

Output Address Buffer D5 ×W3

Operation Set fixed
Implementation Frequency f , fixed
Pipeline Depth fixed

Suppose Ψ represents the overall nested loop acceleration
design space. C ∈ Ψ represents a possible configuration in the
design space and it includes a number of design parameters
as listed in Table I. Assume that the loop to be acceler-
ated has n nested levels and loop count can be denoted as

1The parameters are all customizable in the proposed design framework
except the ones that are clearly identified as fixed.
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l = (l1, l2, ..., ln). R = (R1, R2, R3, R4) stands for the FPGA
resource (i.e. BRAM, DSP, LUT and FF) that are available
on a target FPGA and ResConsumption(C, i) denotes the
four different types of FPGA resource consumption. In(g) and
Out(g) stand for the amount of input and output of a group.
Similarly, In(u) and Out(u) stand for the amount of input
and output of a DFG. DFGCompuTime(C) represents the
number of cycles needed to complete the DFG computation. αi
and βi are constant coefficients depending on target platform
where i = (1, 2, ...). With these denotations, the customization
problem targeting minimum run time can be formulated as
follows:

Minimize

RunTime(C) = CompuTime(C) + CommuTime(C) (1)

subject to
ResConsumption(C, i) ≤ Ri, i = 1, 2, 3, 4

In(g) ≤ D1

Out(g) ≤ D2

DFGCompuTime(C) ≤ D3

n∏
i=1

gi

ui

× In(u) ≤ D4

n∏
i=1

gi

ui

×Out(u) ≤ D5

(2)

RunTime(C) represents the number of cycles needed to
compute the loop on the CPU-FPGA system. It consists
of both the time consumed for computing on FPGA and
communication between FPGA and host CPU, and it can be
calculated using Equation 1.

Since the unrolled part of the loop will be translated to
DFG and then scheduled to the SCGRA overlay. Thus the
DFG computation time is essentially a function of u, r and
c, and it can also be denoted by DFGCompuTime(u, r, c).
The nested loop is computed by repeating the same DFG
execution, and the nested loop computation can be calculated
using Equation 3.

CompuTime(C) =

n∏
i=1

li

ui

×DFGCompuTime(u, r, c) (3)

DMA is typically used for the bulk data transmission.
Communication cost per data can be modeled with a piecewise
linear function and thus DMA latency can be calculated
using DMA(x) where x represents the amount of DMA
transmission. The communication time of the whole nested
loop can be calculated by Equation 4.

CommuTime(C) =

n∏
i=1

li

gi
× (DMA(In(g)) +DMA(Out(g))) (4)

Hardware resource on FPGA mainly includes DSP, LUT, FF
and BRAM (block RAM). LUT, FF and DSP consumption can
be roughly estimated with a linear function of SCGRA size
and can be calculated using Equation 5. BRAM consump-
tion ResConsumption(C, 1) which is slightly different from
LUT, FF and DSP consumption can be calculated precisely
based on the memory block configurations.

ResConsumption(C, i) = αi × r × c+ βi, (i = 2, 3, 4) (5)
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Fig. 5. System customization framework.

B. Customization framework

Figure 5 illustrates the overview of the customization frame-
work. It can be roughly divided into two parts. In the first part,
a sub DSE targeting loop execution time is performed and the
feasible design space can be obtained. Since loop execution
time is determined by the operation scheduling which simply
depends on the loop unrolling factor and SCGRA size, the
sub DSE is much simpler compared to the overall system
DSE which includes more than 10 design parameters. In
the second part, each configuration in the feasible design
space will be evaluated. Instead of using simulation based
methods, analytical models are employed to estimate the
accelerator metrics such as performance and hardware resource
consumption. These analytical models are accurate because of
the regularity of the SCGRA overlay. Even though the feasible
design space is still large, it is fast to evaluate all the config-
urations in it. After the evaluation process, customization for
best performance becomes trivial and the customized design
parameters can be obtained immediately.

Suppose Φ denotes the feasible design space. ε indicates the
percentage of the performance benefit obtained by the increase
of loop unrolling or SCGRA size. It is a user defined threshold
and must be small enough to prune the configurations that are
inappropriate. The configurations in Φ must satisfy Equation 6
and Equation 7.

∀C = (...,u, r, c, ...) ∈ Φ,C
′

= (...,u
′
, r

′
, c

′
, ...) ∈ Φ,

(r + 1 == r
′ and c == c

′
) or (r == r

′ and c+ 1 == c
′
) :

CompuTime(C)− CompuTime(C′)

CompuTime(C)
> ε

(6)

∀C = (...,u, r, c, ...) ∈ Φ,C
′

= (...,u
′
, r, c, ...) ∈ Φ,

u and u
′ are consecutive unrolling factors :

CompuTime(C)− CompuTime(C′)

CompuTime(C)
> ε

(7)

Each feasible configuration C ∈ Φ must have gone through
the scheduling and thus the corresponding scheduling result is
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Fig. 6. The design parameters typically have monotonic influence on the
loop computation time and the computation time benefit degrades with the
increase of the design parameter. (a) SCGRA Size, the SCGRA topology used
are torus with 2×2, 3×2, 3×3, ... while DFG-1, DFG-2 and DFG-3 are DFGs
extracted from matrix-matrix multiplication, fir and Kmean respectively. (b)
Unrolling Factor, the loop used is a 63-tap Fir with 1024 input.

known. Consequently, the computation time of the loop kernel
and minimum instruction memory depth are available as well.
Then we can further evaluate the performance of each feasible
configuration using the models built in previous section and
obtain the optimized configuration through a simple search.

In addition, a series of experiments on Zedboard as shown
in Figure 6 demonstrate that SCGRA size and unrolling factor
present a clear monotonic influence on the loop compute time.
The performance benefit of loop unrolling and increase of
SCGRA size drops gradually. This observation further helps
to simplify the sub DSE with a simple branch and bound
algorithm.

V. EXPERIMENTS AND RESULTS

In the experiments, we measured the time needed to cus-
tomize the loop accelerators and compared the performance of
the resulting accelerators to that of an hard ARM processor.

A. Experiment setup

The customization runtime was obtained using a computer
with Intel(R) Core(TM) i5-3230M CPU and 8GB RAM.
Zedboard which has an ARM processor and an FPGA was
used as the computation system. PlanAhead 14.7 was used
for the SCGRA overlay based design. The customized overlay
implementations on Zedboard run at 250MHz. To perform the
customization, ε is set to be 0.05 and all the resource on
Zedboard is set to be the resource constraint. Software runtime
is obtained from ARM processor of Zedboard.

In this work, we take four applications including Ma-
trix Multiplication (MM), FIR, Kmean(KM) and Sobel Edge
Detector (SE) as our benchmark. The configurations of the
benchmark are detailed in Table II.

B. Customization time

Figure 7 shows the customization time of both the proposed
two step (TS) customization and an exhaustive search based
customization (ES). TS typically completes the customization
in 10 minutes to 20 minutes and it is around 100x faster than
the ES on average. In particular, ES is extremely slow on
MM which has three levels of loop with relatively large loop
count and thus larger design space. Though TS also needs

TABLE II
BENCHMARK CONFIGURATIONS

Benchmark Parameters Loop Structure
MM Matrix Size(100) 100× 100× 100

FIR # of Input (10000)
# of Taps+1 (50) 10000× 50

SE # of Vertical Pixels (128)
# of Horizontal Pixels (128) 128× 128× 3× 3

KM
# of Nodes(5000)
# of Centroids(4)
# of Dimensions(2)

5000× 4× 2
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Fig. 7. Benchmark customization time using both TS and ES

TABLE III
ACCELERATOR CONFIGURATIONS 2

MM
Base (1× 2× 100, 4× 2× 100, 5× 5, 1k, 2k)
TS (1× 5× 100, 50× 5× 100, 4× 4, 1k, 8k)
ES (1× 5× 100, 25× 5× 100, 5× 4, 1k, 8k)

FIR
Base (10× 50, 100× 50, 3× 3, 1k, 2k)
TS (50× 50, 2000× 50, 4× 4, 1k, 4k)
ES (100× 50, 5000× 50, 5× 4, 1k, 8k)

SE
Base (4× 4× 3× 3, 128× 128× 3× 3, 3× 2, 1k, 8k)
TS (16× 16× 3× 3, 128× 128× 3× 3, 4× 4, 1k, 4k)
ES (16× 16× 3× 3, 128× 128× 3× 3, 5× 4, 1.5k, 4k)

KM
Base (25× 4× 2, 2500× 4× 2, 4× 3, 1k, 8k)
TS (125× 4× 2, 625× 4× 2, 5× 5, 1k, 2k)
ES (125× 4× 2, 625× 4× 2, 5× 5, 1k, 2k)

longer time to complete the customization, it skips most of
the unfeasible configurations and the runtime is less sensitive
to the size of the design space.

C. Customized accelerator performance

In order to demonstrate the quality of proposed framework,
we compared the performance of the accelerators with a
random configuration as well as customized configurations
obtained using both TS and ES. The detailed configurations
of the accelerators are listed in Table III. The performance
comparison is shown in Figure 8. It can be found that the
customized accelerators obtained using TS achieve quite close
performance to the ones customized through ES. Particularly,
the customized accelerator achieves up to 10X speedup over
the ARM processor on the benchmark. For FIR, SE and KM,
the speedup is promising. MM has relatively low compute-
IO rate and the single input and output between the on-chip
buffer and the SCGRA overlay limits the performance of
the accelerator. This problem can hopefully be alleviated by
appropriate on-chip buffer partition, which will be supported
in the proposed framework in future.

2The configurations include loop unrolling factor, grouping factor, SCGRA
array size, instruction memory depth and IO buffer depth
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Fig. 8. Customized FPGA loop accelerator performance

VI. CONCLUSION

In this work, we have presented an automatic nested loop
acceleration framework that is based on a soft coarse-grained
reconfigurable array overlay. We have demonstrated that by
taking advantage of the regularity of the overlay, intensive
system customization specific to the given user application can
be performed efficiently, resulting in up to 5 times performance
improvement over solutions without customization at the cost
of 10 to 20 minutes additional tools run time. Overall, the
framework is able to generate accelerators that achieve up to
10 times speed up over software running on the host processor,
resulting in a high design productivity experience for software
programmers.
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Abstract—
This extended abstract presents ThreadPoolComposer, a

high-level synthesis-based development framework and meta-
toolchain that provides a uniform programming interface for
FPGAs portable across multiple platforms.
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I. INTRODUCTION

In recent years, major advances in High-Level Synthesis
(HLS) have spawned a new generation of hardware compilers
(such as LegUp [1] or Nymble [2] in the academic domain,
or Xilinx Vivado HLS in industry) which can generate effi-
cient, behaviorally equivalent hardware for computing kernels
described in C/C++. Until recently, these tools were burdened
not only with tackling the highly complex task of generating
hardware from a C/C++ specification, but also with the equally
daunting task of system synthesis, namely providing an entire
hardware/software environment for the generated hardware
kernels. This encompasses, e.g., defining and connecting to
memories, managing host/FPGA communication and making
the FPGA accessible using appropriate software interfaces.

ThreadPoolComposer aims to divide the task of generating
an FPGA hardware design into the actual HLS problem, and
the problem of generating on-chip micro-architectures at
the system level. The main goals of ThreadPoolComposer are
to provide an easily customizable open-source tool suitable
for researchers investigating the latter problem, and a com-
mon benchmark environment for researchers working on HLS
tools, while isolating software developers from the low-level
mechanisms.

ThreadPoolComposer was developed in context of the EU
FP7 research project REPARA [3], which aims for an au-
tomated front-to-back development flow for heterogeneous
parallel computers encompassing one or more of multi-core,
GPU, FPGA, and DSP-based processing elements. The flow
can begin with legacy C++ code which is then incrementally
refactored into modern C++11/14, from which in turn high-
level code suitable for the different target processors can be
deduced.

II. THREADPOOLCOMPOSER

In the following, the ThreadPoolComposer toolchain and
framework will be presented in a top-down approach, i.e.,

Application

Parallel Runtime

TPC API

Platform API

Device Driver / Simulation

Fig. 1: ThreadPoolComposer Software Stack

from the software interface down to the hardware bitstream
generation for an FPGA device.

A. TPC API

The TPC API is the upper-most API layer (see Fig. 1);
either the application directly uses TPC API, or it uses a
parallel runtime framework (such as OpenCL, FastFlow [4])
which interfaces with TPC API. Its core tasks are 1) device
enumeration and management 2) data transfer to and from the
device 3) job preparation and launching. Listing 1 shows an
example snippet of a job launch:
/* allocate 1 KB on device */
tpc_handle_t h = tpc_device_alloc(dev, 1024);
/* copy array ’data’ to device */
tpc_device_copy_to(dev, data, h, 1024, TPC_BLOCKING_MODE);
/* prepare a new job for kernel id #10 (magic) */
tpc_job_id_t j_id = tpc_device_acquire_job_id(dev, 10);
/* set argument #0 to handle h */
tpc_device_job_set_arg(dev, j_id, 0, sizeof(h), &h);
/* launch job */
tpc_device_job_launch(dev, j_id, TPC_BLOCKING_MODE);
/* call blocks until completed, so get return value */
int r = 0;
tpc_device_job_get_return(dev, j_id, sizeof(r), &r);
printf("result of job: %d\n", r);
/* release job id */
tpc_device_release_job_id(dev, j_id);
/* release device memory */
tpc_device_free(dev, h);

Listing 1: TPC API Example

First, a small block of memory is allocated on the device
via tpc_device_alloc, to which some data is copied via
tpc_device_copy_to. Then, a job is requested and prepared by
setting the first argument to the memory handle, i.e., the kernel
shall work with the data that has just been transferred to the
device. A job can be launched on the device either in blocking

Copyright is held by the author/owner(s).
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or non-blocking mode, i.e., the call returns after the job has
finished, or immediately. Finally, the results are collected
and the device memory is freed. This style is reminiscent of
OpenCL, which was a deliberate choice to flatten the learning
curve. Also note that we deliberately decided for manual data
transfer management in order to give runtime schedulers op-
timization opportunities, e.g., by keeping intermediate results
on the device between job executions. Such capabilities are
currently being integrated into the FastFlow [4] run-time for
heterogeneous parallel computers.

B. Platform API

A wide range of FPGA-based processing platforms exists,
ranging from reconfigurable systems-on-chip to larger PCI
Express-based accelerators. Each device is usually aimed at a
very specific audience and designed with certain applications
in mind, which benefit hugely from the chosen architecture.
This diversity cannot be easily unified without giving up a
significant amount of the appeal of FPGA platforms. There-
fore, the Platform API is inserted as a secondary software
abstraction layer beneath TPC API; its purpose is to implement
all device-specific functionality, currently: 1) device memory
management 2) access to hardware registers, device memory
3) device-host communication and feedback. Both APIs can
be implemented as shared libraries, giving the additional
benefit of being exchangeable at runtime. From the software
developer’s perspective this allows moving between platforms
without recompilation of the application. This facilitates de-
sign space exploration for any given application and increases
re-usability.

C. Compilation Toolchain

C/C++
C/C++

C/C++

Standalone
C/C++

Kernels

IP
IP

IP

IP-XACT
IP Cores

FPGA
Design

0111
1101
0101

Device
Bitstream

HLS TPC LLS
P&R

Fig. 2: TPC Compilation Flow

The overall compilation flow with ThreadPoolComposer
is depicted in Fig. 2: Standalone C/C++ kernels have been
extracted from the application and behaviorally equivalent IP
cores are generated using Xilinx Vivado HLS. ThreadPoolCom-
poser instantiates and arranges IP cores according to the given
Composition, first creating a ThreadPool micro-architecture,
which is wrapped in a Platform to yield a complete, synthesiz-
able design. Finally, Low-Level Synthesis (LLS) is performed
using the FPGA vendor toolchain (Xilinx Vivado).

The central idea behind ThreadPoolComposer is to use HLS
only as a C-to-Hardware compiler at the level of individual
accelerators, as opposed to being used as a C-to-System com-
piler, which would need to create an entire hardware system
of accelerators, as well as internal and external interfaces,
etc. While this is possible, it is rather awkward. Instead, the

ThreadPool
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PE for kernel 1

PE for kernel 2

Control
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Ctrl.
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Ctrl.

PCIe MSI
Int. Ctrl.

. . .

Architecture Platform

Fig. 3: FPGA Design Organization

developer identifies and extracts computational kernels from
the application (probably using tool support), then selects
a Platform, i.e., a device or device family of FPGAs, and
specifies a Composition to the ThreadPoolComposer toolchain:
Such a Composition defines 1) the kernels to be used in the
design 2) the desired number of parallel processing elements
(PEs) for each kernel (i.e., the degree of parallelism for each
kernel) and 3) an Architecture, i.e., a construction template for
the organization of the PEs in the design. Fig. 3 illustrates the
general organization of the design: The Architecture defines the
template to instantiate an on-chip organization of PEs called
the ThreadPool, which connects to the host and memory via
an hardware infrastructure instantiated by a template provided
by the chosen Platform. Note that the dependencies between
the template types have been minimized to enable maximal
re-use of existing Architectures on new Platforms. This also
facilitates comparisons, e.g., of different Architectures on a
given Platform. The toolchain is based on Scala/SBT and the
structural templates are written in Vivado IP Integrator Tcl,
which makes ThreadPoolComposer very easy to customize,
modify, and extend.

III. PLATFORM EVALUATION

ThreadPoolComposer is a work-in-progress and has not
undergone thorough optimization yet. Currently, the system
supports three Platforms using different classes of FPGA
evaluation boards: The zedboard features a Zynq-7000 series
XC7Z020-CLG484-1 FPGA with Fmax of 100 MHz and a
dual-core ARM Cortex A9 at 666 MHz as host processor
running Xilinx Linux 3.17.0. Xilinx’ ZC706 is a larger version
of the same system, using a XC7Z054-FFG900-2 FPGA with
Fmax of 250 MHz and the same Cortex A9 running at
800 Mhz. Finally, the VC709 uses a 8x PCIe Gen3 interface
based on ffLink [5] on a host with an eight-core Intel Xeon
E5-1620v2 running at 3.7 GHz and Linux 3.19.5.

Fig. 4 shows the average data throughput in an otherwise
idle system: Obviously, the VC709 benefits hugely from its
PCIe interface, which transfers up to ≈4.2GiB/s at a chunk
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Fig. 4: Average bidirectional transfer rates between FPGA and host (i.e., user application memory) in MiB/s.

size of 512 KiB (and even more for much larger chunks, see
[5]). The Zynq Platforms currently use kernel DMA buffers for
the transfers, and their allocation leads to a significant slow-
down. A zero-copy approach is currently under development
to address this deficiency.

Fig. 5 depicts the interrupt latencies of the three platforms:
To evaluate hardware/software round-trip time, we used a
hardware counter to count the clock cycles between raising
an interrupt (in hardware) and receiving the acknowledgement
from the software (also in hardware). This measurement
includes all intermediate software layers from OS level up
to user application level. Latencies range from 3.2µs up to
22.5µs; shortest latencies can be achieved at the shortest kernel
runtimes ≤ 10µs (calling thread is not put to sleep at all). Sur-
prisingly, even though the VC709 has to transport interrupts
via PCIe packets (and not dedicated wires), the latencies are
significantly lower (almost by 2x). This is primarily due to the
eight-core Xeon E5 running at 5x the speed of the ARMs on
the zedboard.
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Fig. 5: Interrupt latencies: measured round-trip time
(max/avg/min) between a hardware kernel signaling an inter-
rupt and then receiving an acknowledgement from the host.

IV. CONCLUSION & FUTURE WORK

ThreadPoolComposer is an open-source meta toolchain
which facilitates the exploration on-chip microarchitectures for
FPGA accelerators, comparison of HLS tools and separates
HLS from system-on-chip architecture generation. It further-
more provides a unified API for software developers, which
can be used with every combination of ThreadPoolComposer
Platforms and Architectures, thus improving the separation of
concerns, and provides a solid basis for future automated ar-
chitecture exploration efforts. ThreadPoolComposer currently
supports the Zynq and zedboard devices, as well as the Xilinx
VC709 with PCIe Gen3 x8 support. In future work, we aim to
further increase the performance of the hardware designs by
developing custom IP cores and integrate them by on-the-fly
hardware generation via the Chisel language [6].

ThreadPoolComposer will be released in open-source form
from the Downloads section of www.esa.cs.tu-darmstadt.de
later this year.
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Abstract—The algorithm-to-hardware High-level synthesis
(HLS) tools today are purported to produce hardware compa-
rable in quality to handcrafted designs, particularly with user
directive driven or domains specific HLS. However, HLS tools
are not readily equipped for when an application/algorithm
needs to scale. We present a (work-in-progress) semi-automated
framework to map applications over a packet-switched network
of modules (single FPGA) and then to seamlessly partition such
a network over multiple FPGAs over quasi-serial links. We
illustrate the framework through three application case studies:
LDPC Decoding, Particle Filter based Object Tracking, and
Matrix Vector Multiplication over GF(2). Starting with high-
level representations of each case application, we first express
them in an intermediate message passing formulation, a model
of communicating processing elements. Once the processing
elements are identified, these are either handcrafted or realized
using HLS. The rest of the flow is automated where the processing
elements are plugged on to a configurable network-on-chip
(CONNECT) topology of choice, followed by partitioning the
‘on-chip’ links to work seamlessly across chips/FPGAs.

I. INTRODUCTION

As applications targeting FPGAs grow more pervasive or
when they need to scale, there are matching demands on logic
capacity as well as resources such as special-function on-chip
resources, I/O and reliable multi-gigabit transceivers. Moore
scaling enabled meeting these demands in large part. As with
general purpose processors, more than Moore scaling with
FPGAs is enabled by multiple FPGA platforms—the classic
use-cases of which are ASIC prototyping, Emulation and
Hardware-acceleration of applications and also more recently
for datacenter applications [1].

Although commercial HLS tools such as Vivado [2]—
given good user directives—are capable of producing hard-
ware of quality comparable to handcrafted designs, it is not
within the ready scope of HLS tools to address the issue of
scalability. This problem becomes even more tricky because
of the fragmentation in the ways the multi-FPGA platforms
are built, particularly in terms of the variety in the nature
of host to FPGA/s and inter FPGA links, and underlying
custom interfaces. Dally et. al. [3] recently advocated for
design productivity through modular designs with standardized
interfaces on a network-on-chip abstraction. In the current
context, such a standard interface can abstract the variety in
the physical links.

In this work we begin to explore the scalability of

applications/algorithms (used interchangeably henceforth)—
particularly those amenable to be expressed in a data-flow
manner—through a network abstraction, and an automation
framework that would simplify exploration of this complex
design space in mapping to a given multi-FPGA platform.
In particular, we map the application task graph to a packet-
switched Network-on-Chip (NoC), and extend the NoC ab-
straction across FPGAs communicating over quasi-serial links.
The path from a higher-level specification of the application
to a task-graph with precedence constraints, followed by
coarsening and identifying the partition across chips is not
discussed in this work (related earlier work: [4]).

We illustrate the framework through three cases studies
that could use scalability, each of a different flavor—I. LDPC
decoding, min-sum algorithm; II. Particle Filter based Object
Tracking; and III. Matrix Vector Multiplication over GF(2).
Case I naturally has a message passing structure, unlike II.
For case III, although a more straightforward message passing
model could have been used, as a way to highlight the role
of a domain expert in this step, we use a novel sub-quadratic
algorithm by Ryan Williams [5], this incidentally being its
first hardware realization. For each case study, in phase-1, we
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Fig. 1: Design flow: Scaling Hardware Acceleration

start with a high-level description of the algorithm, express it
in message passing formulation, followed by realization of the
processing elements either by HLS (Vivado) or custom design.
Phase-2 automates the process of integrating these processing
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elements onto a network-on-chip (NoC) architecture (auto-
generated by a NoC Generator, CONNECT [6]), followed
by seamlessly (in a manner oblivious to the designer) par-
titioning the NoC over multiple FPGAs where the NoC links
crossing FPGAs are replaced by stitching-in quasi-serial links
implemented over FPGA pins. In other words, this work flow
expects the algorithm domain expert (software) to help express
the original algorithm in a message passing model (phase-1),
the rest of the flow is an automation that gives a scaled design
over an NoC or multiple FPGAs. Figure 1 outlines the design
flow.

This semi-automated framework is a work in progress, and
was done with a little manual intervention for the case studies
discussed.

A. Organization

The rest of the paper is organized as follows. Section II
discusses phase-1 of the automation where the algorithm is
expressed in a way that helps identification and synthesis of
processing elements, followed by wrapping them with suitable
adapters before plugging them to CONNECT NoC. Section III,
phase-2 of the automation, describes the design of quasi-
SERDES endpoints and the automation of partition of the NoC
across multiple FPGAs. The next three sections IV, V, and VI
discuss the specific case studies mentioned above.

II. PHASE-1: APPLICATION MAPPING TO NOC

A. Message passing modeling of the Application

The algorithm should first be expressed in a message pass-
ing formulation. This modeling, at the software level, is best
done by the domain expert. The result is a model of software
threads—corresponding to processing elements in hardware—
communicating in a message passing fashion. For simplicity,
we assume the body of the function/thread is executed after
all the argument messages on received.

1) Note on compiler-driven automation: This phase too
can be automated as long as the domain expert annotates the
input high-level description appropriately. We have a compiler-
driven toy automation flow (Figure 2) for this task, that
partitions the Dataflow-Graph (DFG) extracted from a high-
level description (straight line code) to be executed on a
network of MIPS processors. The DFG parts are compiled
to a minimal MIPS instruction set with network-push/pull
instructions (FIFO-semantics) added to account for the com-
munication between the DFG parts, taking into account the
precedence constraints/schedule. [4] is a follow-up work in
this direction focusing on fast scheduling and mapping.

B. Processing Element Realization and Interfacing to NoC

The hardware modules corresponding to the nodes of the
message-passing graph identified in the previous step could
either be designed by hand or a HLS tool. However, at this
stage these modules are not yet network/NoC aware. Figure
3 shows the structure of a processing element that makes it
pluggable on to an NoC. It consists of three modules: Data
collector, Data processing and Data distributor. The Data
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Fig. 2: Basic application partitioning and mapping tool flow

processing module is the basic processing element that is
synthesized out of the processes/functions from the previous
step.

DATA
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DATA
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DATA
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Fig. 3: Structure of Processing elements connecting to NoC
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Data collector and Data distributor modules—interfacing
an NoC router on one side—are responsible for enabling
external communication for processing elements over the NoC.
Incoming data (in terms of Flits: basic units of data on NoC
links) to the processing element is accepted at the router and
processed by the Data Collector module, even with the flits
arriving in an out-of-order fashion, and is put in appropriate
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FIFOs corresponding to the input arguments of the processing
element, the Data processor. Internal structure of Data Collec-
tor module is shown in Figure 4a. Once all the data is received
and written into FIFOs, start is asserted to Data processing
module. The interface of the Data processing module should
be as in Figure 4c. Here, as the start is asserted, the input
data is read from the input FIFOs, and once the computation
is complete, the results are stored into output FIFOs and done
is asserted. Data distributor module, as shown in Figure 4b,
prepares the flit data (packet) from results and sends it to
network interface of NoC router.

1) Automation: As mentioned earlier, the basic processing
module could be designed using Verilog HDL or HLS. A script
then generates a wrapper around such processing module in
form of Data collector and Data distributor modules. Storage
requirements of both input and output memory modules should
be known a priori.

III. PHASE-2: PARTITIONING NOC ACROSS MULTIPLE
FPGAS

We use a freely available web-based synthesizable RTL gen-
erator for the Network-on-Chip (NoC) infrastructure, named
CONNECT (Configurable Network Creation Tool). CON-
NECT [6] can be used for generating NoCs of arbitrary
topology and supports a large variety of router and network
configurations. Also, CONNECT incorporates a number of
useful features fine-tuned for the FPGA platform.

In extending the NoC links across FPGAs, we require asyn-
chronous links. However, the limited number of pins per FPGA
would not support the typical router port-widths and radix
counts. We therefore use serializer/deserializer (SERDES)
blocks at the interfaces. One would typically use the dedicated
multi-gigabit transceiver resources on the FPGA for SERDES
links, but for this work, we develop a generic interfacing
module that uses the GPIO pins available on any FPGA. As
we use more than 1-pin to serialize the flit-transactions across
a link (depending on the radix of the router, and the number
of pins available), we call them quasi-SERDES.

Assuming an 8-wire physical link, these quasi-SERDES
modules (on either side of a link) implement the following
protocol—whenever a valid data (valid bit in the flit) in
presented as input from router keep it in buffer and start
sending 8 bits at a time with MSB first; similarly, whenever
a valid 8 bit MSB is received reconstruct output data and put
the data on the output port to the router.

Figure 5 shows an example partition of an NoC with four
routers on two FPGAs. The router R0 (along with its process-
ing element N0) is mapped onto a separate FPGA. Communi-
cation between FPGAs takes place using serializer/deserializer
(quasi-SER/DES) links. The processsing elements N1, 2, 3, 4
here are as constructed earlier.

A. Automation

Given an NoC topology and an application mapped to it (as
described above), and the decisions (presently user specified)
as to ‘cuts’ that specify a partition on the NoC, an python
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Fig. 5: Example 2-FPGA partition of an NoC
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Fig. 6: Quasi-SER/DES Link Endpoint

script automates the process of generating required number of
independent parts of the NoC and inserting a pair of quasi-
SERDES endpoints on each NoC link cut. The independent
part modules of the NoC are synthesized separately and
programmed on respective FPGA boards. We have tested this
framework between two Altera DE0-Nano boards, as well as
two Xilinx Zynq Zedboads (ARM+FPGA).

IV. CASE STUDY: LDPC DECODING

Listing 1 shows an outline of LDPC decoding based on
the popular Min-sum algorithm. Number of data bits, to be
decoded is N and Niters is maximum number of iterations
for LDPC decoding. Input to LDPC decoder is initial Log-
Likelihood Ratio (LLR) of the data. LDPC decoding is done
through Check nodes and Bit nodes iteratively, by passing
message through dedicated channels between the nodes. Num-
ber of channels and interconnection between nodes depends
on type of LDPC code. Here, we are using finite projective
geometry based LDPC code [7][8] in GF (2, 2s) with s = 1.
The message passing model is evident for this application and
the processing nodes (the bit and check nodes) are also readily
identified.
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Listing 1: Outline of min-sum LDPC decoding
1 decoded [N] = minsum ( d a t a [N] , N i t e r ) {
2 do {
3 f o r ( i = 0 ; i < N; i ++) {
4 / / I n i t i a l LLR v a l u e s
5 u0 ( i ) = d a t a ( i ) ;
6 u i j = i n i t i a l LLRs s e n t t o Check node
7 / / j i s d eg re e o f LDPC nodes
8
9 / / Check node p r o c e s s i n g

10 v i j = minimum ( u i j ) ;
11 / / B i t node p r o c e s s i n g
12 [ u i j , sum ] = sum ( v i j ) ;
13 }
14 } whi le ( i t e r a t i o n s <N i t e r ) ;
15
16 decoded [N] = s i g n ( sum ) ;
17 }

Code listing of check node processing and bit node
processing shown in Listing 2 and 3 respectively.

Listing 2: Check node processing
1 [ v1 , v2 , v3 ] = minimum ( u1 , u2 , u3 ) {
2 v1 = min ( u2 , u3 ) ;
3 v2 = min ( u1 , u3 ) ;
4 v3 = min ( u1 , u2 ) ;
5 }

Listing 3: Bit node processing
1 [ sum , u1 , u2 , u3 ] = summation ( u0 , v1 , v2 , v3 ) {
2 sum = u0 + v1 + v2 + v3 ;
3 u1 = sum − v1 ;
4 u2 = sum − v2 ;
5 u3 = sum − v3 ;
6 }

Figures 7 and 8 show typical computing elements for check
node and bit node processing respectively.

Fig. 7: Check node processing module

Fig. 8: Bit node processing module

Furthermore, these computing elements have been wrapped
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Fig. 9: LDPC decoder using 4× 4 mesh CONNECT NoC

with input FIFOs and output FIFOs for interface compatibility
with Data Collector and Data distributor. The wrappers were
generated for both computing nodes, for interfacing them with
CONNECT NoC. Table I shows resource utilization of bare
computing nodes and computing nodes with wrapper.

TABLE I: Resource utilization of computing nodes

Xilinx zc7020 Bit node Check node
W/O With W/O With

wrapper wrapper wrapper wrapper
Resources Available Used Used Used Used

Slice registers 106400 64 297 40 258
Slice LUTs 53200 110 261 73 199

For N = 7, both the wrapped computing nodes (bit node
and check node), 7 each, are then interfaced to a 4 × 4 NoC
as shown in Figure 9. Table II shows resource utilization of
monolithic LDPC decoder (without NoC, same specs) and
same with CONNECT NoC and wrapper. Resource utilization
increases mainly due to the NoC being more generic than
necessary. Dotted arc in Figure 9 indicates partitioning of NoC
for multiple FPGA implementation.

TABLE II: Resource utilization of whole design

Xilinx zc7020 W/O With NoC
wrapper & wrapper

Resources Available Used % Used %
Slice registers 106400 866 1% 1429 1%

Slice LUTs 53200 1370 2% 1384 2%

V. CASE STUDY: PARTICLE FILTER BASED OBJECT
TRACKING ALGORITHM

Important steps for our implementation [9] of object
tracking based on Sequential Importance Sampling (SIS)
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particle filter are listed below:

Particle Filtering based object tracking Algorithm:
• Calculate reference histogram
• For frames k → 2 to n

– Initialize N samples {xi
k}i=1..N (Gaussian distribution)

– Distance weighted candidate histograms for N region
of interest (ROI)

– Calculate particle weights {wi
k}i=1..N

using Bhattacharya distances between reference his-
togram and candidate histograms

– New center is estimated using weighted mean calcula-
tion using centers {xi

k}i=1..N and weights {wi
k}i=1..N

Figure 10 shows implementation of particle filter based
object tracking algorithm on NoC. For this, we have designed
a standalone processing element to compute two important
steps—the histogram calculation and calculation of Bhat-
tacharya distances—of particle filter algorithm as shown in
Figure 11. Figure 12 show the root node on Node-0 that
orchestrates the computations on all other nodes.

Note that this is not necessarily the best way to map
this application on an NoC, however, the approach makes
exploring variations easier. For instance, the Bhattacharya
coefficient calculation block within the current PE could be
pulled out and shared as a resource over the network, as a
separate processing element.
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Fig. 10: The Particle filter processing elements mapped over
NoC

Fig. 11: Compute element for Particle filter based object
tracking

Fig. 12: The processing element on Node 0

Table III shows resource utilization of single processing
element without and with wrapper.

TABLE III: Resource utilization of one PE

Xilinx zc7020 W/O With NoC
wrapper & wrapper

Resources Available Used % Used %
Slice registers 106400 568 1% 2795 2%

Slice LUTs 53200 1502 2% 3346 2%
DSP48E 220 1 1% 20 9%

VI. CASE STUDY: MATRIX VECTOR MULTIPLICATION
OVER GF(2)

Integer factorization is one important application of Matrix
Vector Multiplication over GF(2) and solutions have been
proposed [10], [11] scaling over about a 1000 chips (ASICs,
FPGAs). Block Wiedemann [12] algorithm is often used
for this purpose, which needs computations of the form
(AV,A2V, ..., ArV ) involving a very large boolean matrix A,
and where V has more than one column vectors. Note that A
is reused over all the iterations (r).

(The sparse floating-point version of the same problem
would also have made a good case study, however, over GF(2),
the approach used here is particularly communication intensive
and through this we also show the impact of the choice of
topology.)

A. Method: Sub-quadratic algorithm to BMVM

Our approach is based on the recently proposed com-
binatorial algorithm for matrix vector multiplication by
Ryan Williams [5]. This approach involves a one-time pre-
processing step on A, enabling a sub-quadratic time compu-
tation of BMVM.

The one-time pre-processing phase involves partitioning the
matrix A into tiles of dimensions k × k as in Figure 13a,
followed by construction of n/k look-up tables {LUTi | i :
1 → n/k } corresponding to each of the n/k columns of
the tiled A. LUTi stores all possible linear combinations of
columns of each k×k tile in the column i of the tiled matrix A
(Figure 13a). There can be 2k linear combinations of columns
of each k × k tile, and there are n/k such tiles in a column
of A. Figure 13b shows the composition of LUTi, which is
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Fig. 13: One-time pre-processing phase

partitioned into 2k parts, each part storing n/k k−bit words
such that part−p stores vectors {A1,ibp, A2,ibp, ..., An/k,ibp},
where bp is the k-bit vector corresponding to the partition
index p. In short, the pre-processing step is equivalent to pre-
computing and storing all possible products of the tiles of
matrix A (ie., A1,1, A1,2..An/k,n/k) with any k-bit vector.

The computing phase uses this pre-processed information to
compute Av, for some vector v. Let v be likewise partitioned
into n/k sub-vectors (vT1 , v

T
2 , .., v

T
n/k), and let v′ = Av =

(v′T1 , v′T2 , .., v′Tn/k). For illustration, let LUTi, and vTi be with
processing node-i (or thread-i). As v′i = Ai,1v1 ⊕ Ai,2v2 ⊕
. . .⊕Ai,n/kvn/k, if each processing node-i looks-up partition
indexed by vi in LUTi, and send each of the n/k words
stored in this partition to the corresponding processing nodes,
the result v′i at each processing node-i is obtained by XOR-
accumulating all the incoming k-bit messages.

B. Implementation Details

The one-time precomputed LUTs are mapped to BRAMs
on FPGA (Virtex 6 has about 38Mb). Depending on the
problem parameters (n and k), not all processing nodes can
be mapped to a single FPGA. As per our earlier discussion,
we map all the n/k processing elements across all the FPGAs
in our NoC-driven multi-FPGA platform. It is important to
ensure that while multiple such messages may simultaneously
attempt to update a particular product sub-vector v′i, the
updates are appropriately serialized to maintain correctness.
Since only one flit can be injected and ejected in a single
cycle in the NoC, this constraint is automatically ensured.
Our implementation uses the following “Network and Router
Options” for NoC generated using CONNECT (topology and
number of endpoints specified as required):

Router Type Simple Input Queued (IQ)
Flow Control Type Peek Flow Control

Flit Data Width 16
Flit Buffer Depth 8

Allocator Separable Input first Round-Robin

Since number of sub-vectors can be very large (n/k), we
also implement “folding” (a folding factor f ), such that a
single processing element handles multiple sub-vectors and is
provided with a single coalesced look-up table corresponding
to the input sub-vectors. We use RIFFA 2.0 [13] to make this
acceleration available to the software on the host.
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Reset 

Output Vector 

Done 
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CONNECT generated 
Network 

Fig. 14: Top module for Boolean Matrix Vector Multiplication
(BMVM).

C. Experimental Results

TABLE IV: Comparative results for n = 64 (64× 64 Matrix)
and k = 8, (fold)f = 2 (average over 100 experiments). Uses
4 PEs for the hardware and 4 threads for the software version.

Iterations Time (in msec) Speedup
r Software Mesh (over s/w)
1 0.32 0.052 6.15
10 1.1 0.052 21.15
100 5.2 0.087 59.8
1000 44.2 0.58 76.2

TABLE V: Comparative results for n = 1024 (1024 × 1024
Matrix) and k = 4, (fold)f = 4 (average over 100 experi-
ments). Uses 64 PEs (and 64 threads for s/w version).

Iterations Time (in msec)
Software Ring Mesh Torus Fat tree

1 4.0 0.205 0.075 0.060 0.052
10 22.9 1.67 0.412 0.299 0.275
100 204.3 16.15 3.64 2.83 2.33
1000 2025.4 160.51 35.60 28.09 22.69

The evaluation was done on Xilinx Virtex 6 ML605 on an
Intel i7 host, hardware-software link between them was im-
plemented using RIFFA 2.0 [13]. The multithreaded message
passing software version (processing elements corresponding
to threads) was evaluated on a 6 core Xeon (E5-2620). We
compare the speed-up from the hardware-software solution
compared to this multithreaded pure-software version of the
algorithm. The hardware part on the FPGA operates on a 100
MHz clock.

Tables IV and V compare the performance of the multi-
threaded message passing software model vs. its equivalent
NoC realization on hardware (the times reported for this
include the roundtrip time over RIFFA.) In Table V we have
evaluated the results for four network topologies implemented
on a single FPGA with single cycle hop between adjacent
routers, which depict a clear correlation between network
cost and performance (the cost increases moving from ring
to mesh to torus to fat tree but performance also improves
accordingly). When number of iterations are low (1-10), the
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overheads in terms of host processor - FPGA communication
time in hardware and thread creation/join time in software, are
a dominant component of the overall execution time. For larger
iterations (100-1000), the actual computation times dominate
and the total execution time increases nearly linearly with
number of multiplication iterations.

VII. CONCLUSION

We presented a semi-automated framework, complementary
to existing HLS infrastructure, for scaling algorithms across
multiple FPGAs. Through this work-in-progress, we share our
experiences evaluating this process with three case studies,
each of a different flavor. The application is expressed in the
message passing abstraction, and realized over a Network-
on-Chip. The network-on-chip abstraction is then extended
automatically to seamless work across multiple FPGAs. The
proof-of-concept evaluation was done between Xilinx Zynq
FPGA (zed)boards.
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Abstract—Stream computation is one of the approaches
suitable for FPGA-based custom computing due to its high
throughput capability brought by pipelining with regular memory
access. To increase performance of iterative stream computation,
we can exploit both temporal and spatial parallelism by deepening
and duplicating pipelines, respectively. However, the performance
is constrained by several factors including available hardware re-
sources on FPGA, an external memory bandwidth, and utilization
of pipeline stages, and therefore we need to find the best mix of
the different parallelism to achieve the highest performance per
power. In this paper, we present a domain-specific language (DSL)
based design space exploration for temporally and/or spatially
parallel stream computation with FPGA. We define a DSL
where we can easily design a hierarchical structure of parallel
stream computation with abstract description of computation.
For iterative stream computation of fluid dynamics simulation, we
design hardware structures with a different mix of the temporal
and spatial parallelism. By measuring the performance and the
power consumption, we find the best among them.

I. INTRODUCTION

Recently, FPGA-based custom computing has been attract-
ing a lot of application developers especially in the big-data
and supercomputing fields, where not only performance but
also power consumption is a very important. Since it is difficult
to further increase a clock frequency of a general-purpose
microprocessor, so far many-core accelerators such as GPUs
have been considered as a promising solution to obtain higher
computing performance. However, achievable performance is
limited by the overall power budget of an entire system, and
therefore power efficiency is considered as a key to large-scale
computation.

On the other hand, custom computing with FPGAs is
expected to provide comparable performance at much lower
power consumption. Custom circuits are able to effectively
achieve high performance by exploiting spatial and temporal
parallelism of computing problems at a low clock frequency.
Moreover, recent advancement of FPGAs fabricated by cutting-
edge semiconductor technologies is bringing high potential for
efficient and high performance computation due to on-chip
integration of many hard macros such as block RAMs, high-
speed I/O blocks, and DSP blocks. Especially emerging state-
of-the-art FPGA devices are capable of very high performance
numerical computation at a low power with their hard floating-
point DSP blocks [7].

Stream computing is one of the promising approaches for
efficient computation with custom hardware. This is because
1) deep pipelines can increase the number of operations
performed per memory access, and 2) regular accesses for
streaming data fully utilize a precious bandwidth of external
memories. In addition, dedicated hardware designs bring effi-

cient utilization of resources on FPGAs by adaptively giving
a various mix of different operators and functions, including
an adder, a multiplier, a divider, and a square root function.
So far, researches have been reported on their successful high-
performance stream computing with FPGAs [6], [9].

However, productivity still remains as a big issue not
only in designing custom hardware, but also in exploring
design space to obtain the best performance per power. In
the case of stream computation, we can exploit the two
types of parallelism: spatial, and temporal. By duplicating a
pipeline to exploit the spatial parallelism, we can increase
operations performed at every cycle, resulting in higher perfor-
mance until all the available hardware resources are consumed.
However, this also increases bandwidth requirements to an
external memory, and the scalability is limited by the available
bandwidth. On the other hand, by deepening a pipeline to
exploit the temporal parallelism, we can increase operations
per memory access, resulting in higher performance with the
same memory bandwidth. However, too long pipelines suffer
from low utilization due to the prologue and epilogue effects in
pipelining. Thus, the best mix of the two different parallelism
depends on these constraints, and therefore we have to find the
optimal one for individual application.

In this paper, we present a domain-specific language (DSL)
based approach to easily explore a design space for spatially
and/or temporally parallel stream computation with FPGA.
Our own DSL, called a stream processing description (SPD),
allows us to intuitively describe formulae and submodule calls
for various computation and structures of custom hardware
in a software-like abstraction level. In design exploration, we
design various parallel-configurations in SPD to be compiled
with our SPD compiler, and then find the best among them
by evaluating performance and power consumption of their
actually working implementations with FPGA.

So far, several languages are proposed for stream process-
ing, including StreamIt [11], and its parallelism is studied [3].
There are also presented stream computing compilers targeting
FPGAs, non-commercial ones [4], [5] and commercial ones
[1], [8]. Our DSL is designed for compact and intuitive
description of hierarchal and modular connection of hardware
modules for explicit parallelism. In this study, we apply
it to design space exploration for high-performance custom
computing of the scientific numerical simulation. Contributions
of this work are:

1) DSL, called SPD for custom stream computation,
2) Framework for DSL-based design space exploration,
3) Case study for FPGA-based fluid dynamics simulation.

The SPD compiler used in this work is an extended version of
the previous one published in [10]. The extension was made

Copyright is held by the author/owner(s).
2nd InternationalWorkshop on FPGAs for Software Programmers
(FSP 2015), London, United Kingdom, September 1, 2015. 29
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a) PE with a single pipeline.
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Pipe 1 Pipe n

b) PE with n pipelines.
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PE m

c) m cascaded PEs.

Fig. 1. Definition of stream computing. Fig. 2. Processing element (PE) (a), spatial parallelism (b), and temporal parallelism (c).

essentially for hierarchical and modular description capability.
This paper is organized as follows. Section II describes

parallelism of iterative stream computation, and SPD for de-
sign of stream-computing hardware. Section III gives a design
of an application example and evaluation. Finally, Section IV
gives conclusions and future work.

II. DSL-BASED DESIGN SPACE EXPLORATION

A. Stream computation
Here we define stream computation which is targeted by

our domain-specific language (DSL). Stream computation has
I input data streams xi (1 ≤ n ≤ I) and J output data streams
zj (1 ≤ m ≤ J), each of which has elements as follows:

xi ≡ { xi
1, xi

2, ..., xi
t, ..., xi

T }, (1)

zj ≡ { zj
1, zj

2, ..., zj
t , ..., zj

T }. (2)

Each input or output stream has T scalar elements, incoming
or outcoming in order of a time t = 1, 2, ..., T . As shown in
Fig.1, we model stream computation with a function f j() for
the j-th output stream:

zj
t = f j

({..., x1
t , ...}, {..., x2

t , ...}, ..., {..., xI
t , ...}

)
, (3)

which means that the output of the j-th stream at a time
t is obtained by computing a given function with the input
elements at t and their offset ones if necessary. For example,
stencil computation of a single variable with a 3×3 star stencil
on a 256 × 256 grid can be streamed with

zt = f (xt−256, xt−1, xt, xt+1, xt+256) . (4)

B. Spatial and temporal parallelism
In this research, we focus on iterative stream computation,

which is usually seen in time-marching simulation to repeat-
edly perform the same stream computation for time integral.
For iterative stream computation, we can exploit both spatial
and temporal parallelism by using processing elements (PEs)
with multiple pipelines. Here we assume that a PE updates the
entire data for a single time step by streaming them. Fig.2a
is a processing element of stream computation, where we use
the internal buffer for offset references of streamed data. In
this case where only a single PE with a single pipeline is
used, no coarse grain parallelism is exploited while fine grain
parallelism is available with operators in the pipeline.

By duplicating the pipeline inside the PE as shown in
Fig.2b, we can exploit spatial parallelism, or data parallelism
to speed up computation for a single time step. Here we share
the buffer with the n pipelines to restrict the increase of the
buffer size. We fuse independent buffers into a single buffer
with multiple inputs and outputs, so that most of the internal

memories can be shared. When there is no dependency among
computations of data stream elements, we can utilize this
spatial parallelism to increase the performance with a similar
size of a buffer. However, this approach requires more memory
bandwidth due to the n times wider data stream.

To the contrary, we can keep the same bandwidth require-
ment in increasing the performance by temporal parallelism.
As shown in Fig.2c, we can cascade m PEs and use them as a
longer pipeline to speed up computation for m time steps. The
cascaded PEs require no wider bandwidth to stream data with
an external memory because memory accesses are made only
at the top and the bottom of the pipeline. Since streaming T
data elements through d pipeline stages takes (T + d) cycles,
m-cascaded PEs take (T +md) cycles while a single PE takes
m(T + d) cycles for computing m time steps. When T >> d,
m times faster computation is achieved by cascading m PEs.

However, this approach has two inherent drawbacks. First,
the total buffer size increases. Cascade connection of m
independent PEs consumes m times more memories for their
internal buffers. Accordingly, on-chip memory resources can
limit the number of PEs cascaded when each buffer is large.
Second, the utilization of PEs becomes lower due to the
prologue and epilogue effects of a pipeline. In pipelining,
the performance gain comes from parallel processing with
different pipeline stages. Accordingly, some PEs are idle until
all the PEs receive data elements to compute at the beginning
of pipelining, and after PEs finish computation of the last
element. The total effective performance can be much degraded
when a short stream goes through a long pipeline.

We can apply both the temporal and spatial parallelism by
cascading m PEs with n internal pipelines, giving a design
space for various combinations of (n, m). On-chip hardware
resources constrain available combinations while their per-
formance depends on several factors including an external
memory bandwidth, the depth of pipelines, and the size of
stream data. Therefore, given a computing application and an
FPGA board, we have to find the one for the best performance
and power consumption among available combinations of
(n, m).

C. Stream processing description (SPD)
It is not an easy task to explore design space by designing

and implementing various hardware structures in RTL. To
improve productivity of design space exploration, we propose
a domain-specific language (DSL) for abstracted description
of stream-computing hardware. We name the DSL “stream
processing description”, or SPD. We design SPD for the two
major requirements. The first one is to easily and intuitively
describe computations with formula, like software codes. The
second one is to describe hardware structures in a simple way.
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Fig. 3. Hierarchical pipeline construction for stream computing with a data-flow graph (DFG).

1: Name core; # name of this core
2: Main_In {main_i::x1,x2,x3,x4}; # main stream in
3: Main_Out {main_o::z1,z2}; # main stream out
4: Brch_In {brch_i::bin1}; # branch inputs
5: Brch_Out {brch_o::bout1}; # branch outputs
6:
7: Param c = 123.456; # define parameter
8: EQU Node1, t1 = x1 * x2; # eq (4) (Node1)
9: EQU Node2, t2 = x3 + x4; # eq (5) (Node2)

10: EQU Node3, z1 = t1 - t2 * bin1; # eq (6) (Node3)
11: EQU Node4, z2 = t1 / t2 + c; # eq (7) (Node4)
12: DRCT (bout1) = (t2); # port connection

Fig. 4. Stream-processing description (SPD) code for DFG in Fig.3a.

The SPD format allows us to intuitively describe computing
formula for pipelines of PEs and connection of the PEs.

In the rest of this section, we use the following example of
stream computation with an input vector v in

i = (x1, x2, x3, x4)
and an output vector vout

i = (z1, z2):

t1 = x1 × x2, (5)
t2 = x3 + x4, (6)
z1 = t1 − t2 × bin1, (7)
z2 = t1 / t2 + c, (8)

bout1 = t2, (9)

where t1 and t2 are temporary variables, and c is a constant.
bin1 and bout1 are additional input and output streams, respec-
tively. A stream-computing hardware can be implemented as
a static mapping of a data-flow graph (DFG) of computation.

1) Computation description: Fig.3a shows the DFG of
computation for Eqs.(5) to (8), which correspond to Nodes
1 to 4, respectively. Thus, each node represents each formula.
The directed edges show the dependences among the formulae.
Eq.(9) is an output of Node 2 as bout1. The computation of
a formula can be implemented as a pipelined data-path. Fig.3b
shows pipelines for the DFG where nodes are replaced with
their pipelined data-paths. Since nodes of different formulae
can have a different number of pipeline stages, we have to
equalize all the path lengths by inserting additional delays.

Figs.4 is an example description in SPD for the DFG
of Fig.3a. We describe the computations only with 12
lines. Please note that strings after ’#’ are treated as
comments. Each line is described in a common style of
"Function Fields" for one of the functions summarized

1: Name Array;
2: Main_In {main_i::i1,i2,i3,i4,i5,i6,i7,i8};
3: Main_Out {main_o::o1,o2,o3};
4:
5: HDL Node_a, 14, (t1,t2)(b_a) = core(i1,i2,i3,i4)(b_b);
6: HDL Node_b, 14, (t3,t4)(b_b) = core(i5,i6,i7,i8)(b_a);
7: HDL Node_c, 14, (o1,o2) = core(t1,t2,t3,t4);
8: EQU Node_d, o3 = t2 * t4;

Fig. 5. Stream-processing description (SPD) code for the structure in Fig.3d.

in Table I. These functions are mainly classified into “core and
interfaces” and “nodes and connection.” In the example code
of Fig.4, Lines 1 to 5 are for the former. Line 1 names this core
with core. Line 2 makes a main stream input interface with
a name of main_i and its port names of x1, x2, x3, and
x4. Similarly, Line 3 makes a main stream output interface
main_o with ports z1 and z2. Lines 4 and 5 make a branch
input brch_i with a port bin1, and an output brch_o with
a port bout1, respectively.

The remaining lines are written for nodes and connection.
Line 7 beginning with Param defines a parameter cnst with
a constant of 123.456, which is used in the formula of Line
11. Such parameters in formulae are statically replaced with
their values by a preprocessor. Lines 8 to 11 create Nodes 1 to
4 for a static single assignment to an output port variable with
a calculation formula. We refer to this type of a node as an
equation node or simply EQU node. Function EQU is followed
by an unique node name and a form of a port variable, ’=’,
and a formula. In a formula, we can use parentheses, operators
of +, -, *, and /, and a square root function of sqrt().

In SPD, variables are 32-bit words. For EQU nodes, all
related variables are treated as single precision floating-point
numbers for numerical computation. When an output variable
of a node is referred in a formula of another node, these nodes
are connected with a directed edge in the DFG. In addition, we
can explicitly connect ports of variables with different names
by using DRCT function. Line 12 connects output t2 of Node2
to input bout1 of the branch output interface of Line 5.

2) Hardware structure description: The DFG mapped to
hardware with pipelined nodes can be considered a single
pipeline, as shown in Fig.3c, which can be used as a node in a
DFG. This means that we can construct a higher level structure
by connecting existing module cores. For example, in Fig.3d,
the core of Fig.3c is used as the three nodes connected with
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TABLE I. FORMAT OF STREAM PROCESSING DESCRIPTION (SPD).

Category Function Fields Description

Core and
interfaces

Name <core name> Set a name of this core.
Main_In {<IF name>::port1, port2, ...} Append input ports for a main stream interface.
Main_Out {<IF name>::port1, port2, ...} Append output ports for a main stream interface.
Brch_In {<IF name>::port1, port2, ...} Append input ports for a branch interface.
Brch_Out {<IF name>::port1, port2, ...} Append output ports for a branch interface.

Nodes and
connection

EQU <node name>, "equation" Append an equation node.

HDL <node name>, <delay>, "module call", <param list> Append an HDL node.

DRCT (destination port list) = (source port list) Connect ports of nodes directly.

Others Param <parameter name> = <constant value> Define a parameter with a constant value.

TABLE II. FORMAT OF SPD SUBFIELD.

Subfield Format

"equation" <output port> = "calculation formula using input port names"
Example: out = ( in1 + in2 * ( t1 - t2 ) ) / in3 + sqrt( in4 )

"module call" (main output ports)(branch output ports) = <module name>(main input ports)(branch input ports)
Example: (o1,o2,o3)(do1,bo2) = MyModule(x1,x2,x3,x4,x5)(bi1,bi2,bi3)

another node. Thus we can hierarchically build a hardware
structure from a low-level design of data-paths in a core to a
high-level design of core connection. This approach provides
high productivity in implementing various configurations for
parallel stream computation with PEs.

Function HDL is used to create a node with an existing
module. We refer to this type of a node as HDL node. The
pipeline delay of the HDL node has to be statically known
in advance of compilation. In HDL line, HDL is followed by
a node name, a pipeline delay, module-call description, and
a parameter list which is directly passed to parameters of a
Verilog-HDL module. The parameter list can be omitted if not
necessary. As shown in Table II, “module call” has a similar
style to a subroutine call in software, except that multiple
output variables can be specified. Fig.5 shows an example of
multiple output variables which are written in parentheses. For
HDL nodes, all variables are basically treated as raw binary
data of 32-bit words while an actual data type in processing
depends on each HDL node.

D. Library modules for HDL node
We can make HDL nodes not only by calling modules

described in other SPD codes, but also by using existing mod-
ules written in HDL. EQU nodes allow developers to easily
describe numerical computation, while HDL nodes extend the
function of SPD to arbitrary operations and controls beyond
computation. We provide elementary HDL modules in a library
that can be used in stream processing without writing Verilog-
HDL. The library of the present version contains Synchronous
multiplexer, Comparator, Eliminator, Delay, Stream forward,
Stream backward, and 2D stencil buffer modules.

III. DESIGN AND EVALUATION

A. Overview
As a benchmarking application for DSL-based design space

exploration, we chose 2D fluid dynamics simulation based
on the lattice Boltzmann method (LBM) [2]. We describe
stream computation of LBM in SPD for hierarchical hardware
structures; sub-modules for computing stages, a PE consisting
of the sub-modules, and cascade connection of the PE. We
compile the SPD codes with our stream-computing compiler,
which is an extended version of [10], to obtain HDL codes of
a custom computing core.

We use an IP-based system integration tool, ALTERA Qsys
in order to build a system-on-chip (SoC) common platform
consisting of PCI-Express I/F, memory controllers, scatter-
gather DMAs, and their interconnects on FPGA. We can easily
embed the core generated by the SPD compiler into the system,
while this process is not completely automated yet. We also
developed a Linux driver and a library software for data
transfer between a host program and the FPGA board, and
control of stream computation on FPGA.

We compiled the system with the embedded core by using
ALTERA Quartus II 14.1 compiler to generate a bitstream for
ALTERA Stratix V 5SGXEA7N2 FPGA. We verify FPGA-
based fluid dynamics computation with a TERASIC DE5-
NET board by comparing the computational results with those
by software-based computation. All the designed LBM cores
operate at 180 MHz, while 512-bit width DDR3 memory
controllers operate at 200 MHz. We evaluate area, active
power of the FPGA board, pipeline utilization, and sustained
performance per power for design space exploration.

B. 2D fluid dynamics simulation based on LBM
In the 2D fluid dynamics simulation based on LBM, we

compute propagation and collision of fictive particles over a
discrete lattice mesh for viscous fluid flow. The details of
computation are available in [6]. The computing algorithm
of LBM has the three stages of the collision calculation, the
translation, and the boundary computation. We wrote SPD
codes separately for sub-modules of these stages. Please note
that we made three different SPD codes of the translation stage
for x1, x2, and x4 parallel pipelines.

Next, we wrote SPD codes to make PEs with n = 1, 2,
and 4 pipelines. Figs.6 and 8 show the SPD codes for PEs
with x1 and x2 pipelines, respectively. Figs.7 and 9 are their
compiled DFGs. Here the rounded rectangles are HDL nodes,
including the collision calculation node: uLBM_calc, the x1
or x2 translation node: uLBM_Trans2D, and the boundary
computation node: uLBM_bndry. The synthesized PEs have
855 and 495 pipeline stages, respectively. Finally, we wrote
SPD codes to cascade m PEs. Figs.10 and 11 show the SPD
codes for m = 1 and 2 cascaded PEs with n = 1 pipeline.
Fig.12 shows the DFGs of m = 1 and 2 PEs with n = 1
pipeline. Finally, we implemented six designs for (n, m) =
(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), and (4, 1).
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Name PEx1;
Main_In {Mi::if0_0,if1_0,if2_0,if3_0,if4_0,if5_0,if6_0,if7_0,if8_0, iat_0,

sop,eop, one_tau,rho_in,rho_out};
Main_Out {Mo::of0_0,of1_0,of2_0,of3_0,of4_0,of5_0,of6_0,of7_0,of8_0, oat_0,

sop,eop};

################ Calculation stage (x1 parallel)
HDL uCalc0, 90,

(f0_0_c,f1_0_c,f2_0_c,f3_0_c,f4_0_c,f5_0_c,f6_0_c,f7_0_c,f8_0_c) =
Calc(if0_0,if1_0,if2_0,if3_0,if4_0,if5_0,if6_0,if7_0,if8_0, one_tau);

################ Translation stage (x1 parallel buffer)
HDL uTransx1, 724,

(f0_0_t,f1_0_t,f2_0_t,f3_0_t,f4_0_t,f5_0_t,f6_0_t,f7_0_t,f8_0_t, at_0_t,
Mo::sop,Mo::eop) =
Transx2(f0_0_c,f1_0_c,f2_0_c,f3_0_c,f4_0_c,f5_0_c,f6_0_c,f7_0_c,f8_0_c,iat_0,

Mi::sop,Mi::eop);

################ Boundary stage (x1 parallel)
HDL uBoundary0, 40,

(f0_0_b,f1_0_b,f2_0_b,f3_0_b,f4_0_b,f5_0_b,f6_0_b,f7_0_b,f8_0_b,at_0_b) =
Boundary(f0_0_t,f1_0_t,f2_0_t,f3_0_t,f4_0_t,f5_0_t,f6_0_t,f7_0_t,f8_0_t,at_0_t,

rho_in,rho_out);

DRCT (of0_0,of1_0,of2_0,of3_0,of4_0,of5_0,of6_0,of7_0,of8_0) =
(f0_0_b,f1_0_b,f2_0_b,f3_0_b,f4_0_b,f5_0_b,f6_0_b,f7_0_b,f8_0_b);

DRCT (oat_0) = (at_0_b);

Fig. 6. SPD code of a stream computing LBM PE with x1 pipeline.

MAIN_IN : Mi (0)
if0 if1 if2 if3 if4 if5 if6 if7 if8 iAtr sop eop one_tau rho_in rho_out

HDL
uLBM_calc

d=90 (0)
90 90 90 814 814

of0 of1 of2 of3 of4 of5 of6 of7 of8 oAtr sop eop
MAIN_OUT : Mo (854)

HDL
uLBM_Trans2Dx1

d=724 (90)

HDL
uLBM_bndry
d=40 (814)

40 40

Fig. 7. Stream-computing LBM PE with x1 pipeline.

C. Resources and performance
Table III summarizes resource consumption of the im-

plemented designs. The SoC peripherals including the PCI-
Express I/F and DDR3 memory controllers consume about
23% of ALMs (adaptive logic modules), 6% of on-chip mem-
ories, and no DSP block. With the remaining resources, we
implemented up to nm = 4 pipelines in PEs. Please note that
for nm = 4, the four cascaded PEs with x1 pipelines consume
3.5 times more on-chip memories than those for the PE with x4
pipelines. This is because the x4 pipelines share a buffer which
is slightly larger than the buffer for the x1 pipeline. However,
in the case of this 2-dimensional LBM computation, the size
of the buffer is very small and negligible. Each pipeline has a
total of 131 floating-point (FP) operators in a single precision
as shown in Table IV.

Let NFlops denote the number of FP operators in each
pipeline. Since m cascaded PEs with n pipelines perform
nmNFlops operations every cycle once a pipeline is filled, the
peak performance is calculated with

P (n, m) = nmNFlopsFGHz [GFlop/s], (10)

where FGHz is the operating frequency in GHz. In our designs,
FGHz = 0.18 and NFlops = 131. Accordingly, the theoretical
peak performance is 94.32 GFlop/s for nm = 4.

Then we evaluate the utilization of the PE pipelines. By
using hardware counters inserted into the top of the LBM com-
puting core, we counted the number of cycles (n c) bringing
valid data for computation, and the number of stall cycles (n s)
with no computation performed. We calculate the utilization u

Name PEx2;
Main_In {Mi::if0_0,if1_0,if2_0,if3_0,if4_0,if5_0,if6_0,if7_0,if8_0, iat_0,

if0_1,if1_1,if2_1,if3_1,if4_1,if5_1,if6_1,if7_1,if8_1, iat_1,
sop,eop, one_tau,rho_in,rho_out};

Main_Out {Mo::of0_0,of1_0,of2_0,of3_0,of4_0,of5_0,of6_0,of7_0,of8_0, oat_0,
of0_1,of1_1,of2_1,of3_1,of4_1,of5_1,of6_1,of7_1,of8_1, oat_1,
sop,eop};

################ Calculation stage (x2 parallel)
HDL uCalc0, 90,

(f0_0_c,f1_0_c,f2_0_c,f3_0_c,f4_0_c,f5_0_c,f6_0_c,f7_0_c,f8_0_c) =
Calc(if0_0,if1_0,if2_0,if3_0,if4_0,if5_0,if6_0,if7_0,if8_0, one_tau);

HDL uCalc1, 90,
(f0_1_c,f1_1_c,f2_1_c,f3_1_c,f4_1_c,f5_1_c,f6_1_c,f7_1_c,f8_1_c) =
Calc(if0_1,if1_1,if2_1,if3_1,if4_1,if5_1,if6_1,if7_1,if8_1, one_tau);

################ Translation stage (x2 parallel buffer)
HDL uTransx2, 364,

(f0_0_t,f1_0_t,f2_0_t,f3_0_t,f4_0_t,f5_0_t,f6_0_t,f7_0_t,f8_0_t, at_0_t,
f0_1_t,f1_1_t,f2_1_t,f3_1_t,f4_1_t,f5_1_t,f6_1_t,f7_1_t,f8_1_t, at_1_t,
Mo::sop,Mo::eop) =
Transx2(f0_0_c,f1_0_c,f2_0_c,f3_0_c,f4_0_c,f5_0_c,f6_0_c,f7_0_c,f8_0_c,iat_0,

f0_1_c,f1_1_c,f2_1_c,f3_1_c,f4_1_c,f5_1_c,f6_1_c,f7_1_c,f8_1_c,iat_1,
Mi::sop,Mi::eop);

################ Boundary stage (x2 parallel)
HDL uBoundary0, 40,

(f0_0_b,f1_0_b,f2_0_b,f3_0_b,f4_0_b,f5_0_b,f6_0_b,f7_0_b,f8_0_b,at_0_b) =
Boundary(f0_0_t,f1_0_t,f2_0_t,f3_0_t,f4_0_t,f5_0_t,f6_0_t,f7_0_t,f8_0_t,at_0_t,

rho_in,rho_out);
HDL uBoundary1, 40,

(f0_1_b,f1_1_b,f2_1_b,f3_1_b,f4_1_b,f5_1_b,f6_1_b,f7_1_b,f8_1_b,at_1_b) =
Boundary(f0_1_t,f1_1_t,f2_1_t,f3_1_t,f4_1_t,f5_1_t,f6_1_t,f7_1_t,f8_1_t,at_1_t,

rho_in,rho_out)();

DRCT (of0_0,of1_0,of2_0,of3_0,of4_0,of5_0,of6_0,of7_0,of8_0) =
(f0_0_b,f1_0_b,f2_0_b,f3_0_b,f4_0_b,f5_0_b,f6_0_b,f7_0_b,f8_0_b);

DRCT (of0_1,of1_1,of2_1,of3_1,of4_1,of5_1,of6_1,of7_1,of8_1) =
(f0_1_b,f1_1_b,f2_1_b,f3_1_b,f4_1_b,f5_1_b,f6_1_b,f7_1_b,f8_1_b);

DRCT (oat_0, oat_1) = (at_0_b, at_1_b);

Fig. 8. SPD code of a stream computing LBM PE with x2 pipelines.

MAIN_IN : Mi (0)
if0_0 if1_0 if2_0 if3_0 if4_0 if5_0 if6_0 if7_0 if8_0 iAtr_0 if0_1 if1_1 if2_1 if3_1 if4_1 if5_1 if6_1 if7_1 if8_1 iAtr_1 sop eop one_tau rho_in rho_out

HDL
uLBM_calc_0

d=90 (0)

HDL
uLBM_calc_1

d=90 (0)
90 90 90 90

454 454

of0_0 of1_0 of2_0 of3_0 of4_0 of5_0 of6_0 of7_0 of8_0 oAtr_0 of0_1 of1_1 of2_1 of3_1 of4_1 of5_1 of6_1 of7_1 of8_1 oAtr_1 sop eop
MAIN_OUT : Mo (494)

HDL
uLBM_Trans2Dx2

d=364 (90)

HDL
uLBM_bndry_0

d=40 (454)

HDL
uLBM_bndry_1

d=40 (454)
40 40

Fig. 9. Stream-computing LBM PE with x2 pipelines.

with u = nc /(nc +ns). As shown in Table III, the utilization
is almost 1.0 for PEs with x1 pipeline while PEs with x2 or
x4 pipelines have a much less utilization. This is because the
DDR3 memory on the FPGA board has only 12.8 GB/s for
each of read and write, which can support only the bandwidth
required by the x1 pipeline, which is 7.20 GB/s.

By multiplying the utilization and the peak performance,
we obtain the sustained performance, which is shown in Table
III. In our design space exploration, the configuration of
(n, m) = (1, 4) gives the best sustained performance of 94.2
GFlop/s, which is very close to the peak. Please note that
the negative effect on utilization in pipelining is negligible
for a sufficiently large computing-grid, for example, a grid
with 720 × 300 cells. To evaluate performance per power,
we measured the power consumption of the FPGA board
by measuring the power supplied by the PCI-Express edge
connector with HIOKI power meter PW3336. The highest
performance per power is also given by the same configuration
of (n, m) = (1, 4), which is 2.4 GFlop/sW.

IV. CONCLUSIONS

This paper presents DSL-based design space exploration
to find the best mix of the spatial and temporal parallelism
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TABLE III. RESOURCE CONSUMPTION, OPERATING FREQUENCY, PIPELINE UTILIZATION, PERFORMANCE, AND POWER.

Device / Modules ALMs % Regs % BRAM [bits] % DSPs % Freq. Utilization Performance Power Perf/W
Stratix V 5SGXEA7 234720 100 938880 100 52428800 100 256 100 [MHz] (u) [GFlop/s] [W] [GFlop/sW]

SoC peripherals 54997 23.4 87163 9.28 3110753 5.93 0 0.0 - - - - -

(n pipelines, m PEs) = (1, 1) 34310 14.6 62145 6.62 573370 1.09 48 18.8

180

0.999 23.5 28.1 0.837
(1, 2) 63687 27.1 122426 13.0 1243564 2.37 96 37.5 0.999 47.1 30.6 1.542
(1, 4) 129738 55.3 244196 26.0 2987730 5.70 192 75.0 0.999 94.2 39.0 2.416
(2, 1) 64119 27.3 122630 13.1 642410 1.23 96 37.5 0.557 26.3 32.3 0.812
(2, 2) 136742 58.3 244195 26.0 1316604 2.51 192 75.0 0.558 52.6 37.4 1.405
(4, 1) 128431 54.7 243626 25.9 859604 1.64 192 75.0 0.279 26.3 33.2 0.792

Name mQsys_Core10;
Main_In {Mi::if0_0,if1_0,if2_0,if3_0,if4_0,if5_0,if6_0,if7_0,if8_0,iAtr_0,sop,eop};
Main_Out {Mo::of0_0,of1_0,of2_0,of3_0,of4_0,of5_0,of6_0,of7_0,of8_0,oAtr_0,sop,eop};
Append_Reg {Mi::one_tau, rho_in, rho_out}; ## Definition of constant inputs

################ PEx1_1
HDL Core_1, 495,

(f0_0_1,f1_0_1,f2_0_1,f3_0_1,f4_0_1,f5_0_1,f6_0_1,f7_0_1,f8_0_1,Atr_0_1,
sop_1,eop_1) =
PEx1(if0_0,if1_0,if2_0,if3_0,if4_0,if5_0,if6_0,if7_0,if8_0,iAtr_0,

Mi::sop,Mi::eop, one_tau,rho_in,rho_out);

DRCT (of0_0, of1_0, of2_0, of3_0, of4_0, of5_0, of6_0, of7_0, of8_0) =
(f0_0_1,f1_0_1,f2_0_1,f3_0_1,f4_0_1,f5_0_1,f6_0_1,f7_0_1,f8_0_1);

DRCT (oAtr_0, Mo::sop, Mo::eop) = (Atr_0_1, sop_1, eop_1);

Fig. 10. SPD code of a single PE with x1 pipeline.

TABLE IV. THE NUMBER OF FLOATING-POINT OPERATORS IN A CORE.

Adder Multiplier Divider Total

PE with x1 pipeline 70 60 1 131

for FPGA-based iterative stream computation. To allow to
intuitively describe formulae and submodule calls for various
computation and structures of custom hardware in a software-
like abstraction level, we propose a domain-specific language,
called SPD. Although the SPD compiler is not completely
automated yet for the exploration, it allows software developers
to design and implement custom hardware with various parallel
configurations more easily than doing in conventional RTL
languages. Evaluating six configurations of stream-computing
cores for fluid dynamics simulation based on LBM, we found
the best performance per power is obtained by the design
depending only on the temporal parallelism due to the memory
bandwidth requirement less than the available one on the used
FPGA board.

In the future work, we will automate the process of design
space exploration with software codes of a target application.
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MAIN_OUT : Mo (855)

MAIN_REG : Mi (0)
one_tau rho_in rho_out

MAIN_IN : Mi (0)
if0 if1 if2 if3 if4 if5 if6 if7 if8 iAtr sop eop

HDL
Core1

d=855 (0)

of0 of1 of2 of3 of4 of5 of6 of7 of8 oAtr sop eop
MAIN_OUT : Mo (1710)
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Core2

d=855 (855)
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Abstract—Heterogeneous computing is emerging as a manda-
tory requirement for power-efficient system design. With this aim,
modern heterogeneous platforms like Zynq All-Programmable
SoC, that integrates ARM-based SMP and programmable logic,
have been designed. However, those platforms introduce large
design cycles consisting on hardware/software partitioning, de-
cisions on granularity and number of hardware accelerators,
hardware/software integration, bitstream generation, etc.

This paper presents a performance parallel heterogeneous
estimation for systems where hardware/software co-design and
run-time heterogeneous task scheduling are key. The results show
that the programmer can quickly decide, based only on her/his
OmpSs (OpenMP + extensions) application, which is the co-
design that achieves nearly optimal heterogeneous parallel perfor-
mance, based on the methodology presented and considering only
synthesis estimation results. The methodology presented reduces
the programmer co-design decision from hours to minutes and
shows high potential on hardware/software heterogeneous parallel
performance estimation on the Zynq All-Programmable SoC.

I. INTRODUCTION

With the end of Dennard Scaling [7] computer architecture
has entered a new era. One main thread followed by several
architectures has been to evolve into multi- and many-core sys-
tems composed of several identical cores. Another important
trend has been the incorporation of large, specialized accelera-
tor systems (mainly evolved from the graphics ecosystem) that
efficiently execute single instruction mulitple thread codes.

However, the struggle to squeeze some performance out
of a continuously growing number of transistors per chip has,
somehow, avoided its most obvious and promising path: the
creation of a large number of very specialized accelerators
that can, on one side, be really energy efficient and, on the
other, make the work faster by eliminating software overheads.
Indeed, ASICs, so common only a few years ago, are being
progressively discarded in favor of cheaper, more general
components that have the essential advantage of short time-to-
market cycles. In this sense, new hybrid CPU-FPGA systems
can be seen as the future of heterogeneous computing. While
being roughly one order of magnitude slower that its ASIC
equivalent, FPGAs can be reprogrammed on the fly, and
adapt to changing environments. Furthermore, being tightly

integrated with general cores, those systems can retain the
programmability of common CPUs and join it with the tremen-
dous boost in performance and efficiency that characterizes
specialized hardware.

However, in order to be broadly used in the mass-market,
those systems still face two important challenges: first, a soft-
ware ecosystem that facilitates their programmability without
burdening the programmer with all the cumbersome details
(data transfers, synchronization, memory coherence...) of het-
erogeneous systems and, second, an easy and fast way to
perform a quick decision of the best mapping of all the
application components to the most adequate hardware to
compute them in a parallel heterogeneous system.

Several works have addressed the first problem and it can
be said that parallel programming models (like OmpSs [9]
and OpenMP 4.0) can be used to solve it. However the second
problem is still a barren field. Indeed, assuming that the first
step of selecting which application kernels can be computed
by the reconfigurable hardware is done by a programmer,
and generating the proper HDL code for them could be
done automatically, still remains the problem that a FPGA
bitstream generation can take several hours. After that, the
whole application should be analyzed only to find out if
the hardware-software partition, or the resources distribution
between the kernels in the FPGA, are adequate or not for
the scheduling policy of the programming model and the
heterogeneous system at hand. Any mistake in the selection
or any bad guess by the expert programmer means repeating
the whole process leading to a trial and error process composed
of several hours steps..., in addition to a unexpected parallel
heterogeneous performance.

In this paper we address those issues by presenting a
way to speed-up the process and help introduce heterogeneous
systems into everyday computation. The suggested workflow
is designed to estimate the performance of OmpSs applications
on any heterogeneous parallel architecture using the execution
time information (estimated or not) of the OmpSs tasks running
on the processing components of the target architecture. Those
heterogeneous architectures are currently target by cyber-
physical computing platforms [2], [5] that may combine cluster
of nodes with SMP, FPGAs and GPUs. Here, we focus on the
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heterogeneous parallel performance estimation for the Zynq
All-Programmable SoC architecture, that combines ARM-
based SMP and a FPGA, and that also includes GPUs in the
next generation Zynq UltraScale+ MPSoC[20]. This workflow
integrates a simulator which implements the runtime of the
OmpSs programming model, and a shared memory coarse-
grain component (ARM cores and FPGA accelerators) archi-
tecture with local memory (BRAM) for the FPGA accelerators.
This simulation is fed by the reports obtained from the high
level synthesis tool for the timing information of the hardware
accelerators considered by the programmer and a task-based
trace generated by a sequential execution of the OmpSs
application. The framework simulates the execution of the trace
tasks in a data-flow manner as the software runtime of OmpSs
would do, considering all the components of the heterogeneous
architecture. With this, the simulator can obtain the estimated
heterogeneous parallel performance for the application kernels
(tasks) in the target system. Finally, once the best alternative
is selected based on the simulator results, the bitstream can
be effectively generated and executed in order to check the
correctness of the conclusions. This process lasts just a few
minutes or even seconds to achieve similar results than having
to generate the bitstream for each possible mapping and run
the application in the real system.

Our methodology currently considers that the programmer
is an parallel programmer that only needs to explore few hard-
ware/software codesigns, otherwise a design space exploration
strategy should be analyzed to reduce the amount of possible
solutions, like using back annotations [11], [19].

So, the contributions of the paper are as follows:

• Light coarse-grain estimation that helps the program-
mer to have a fast order-of-magintude decision of the
best hardware/software co-design on a heterogeneous
parallel system with FPGA devices, reducing the num-
ber of bitstreams to be generated.

• Heterogeneous parallel performance estimator based
on a task-based trace driven simulator that integrates
the runtime of the OmpSs programming model and a
shared memory coarse-grain component architecture,
with local memory for the hardware accelerators.

• A complete framework that avoids the need of placing
and routing each FPGA accelerator required by the
programmer annotated tasks with target FPGA.

The rest of this paper is organized as follows: Section II
presents the related work of the paper. After that section III
presents the methodology suggested, section IV its imple-
mentation and section V presents the experimental setup.
Section VI presents the results obtained. Finally, section VII
concludes the article.

II. RELATED WORK

The work presented in this paper addresses the problem of
how to use efficiently, at run-time, the hardware resources of
an heterogeneous system selecting the best among the large
amount of implementation possibilities that such a system
offers. To do so, it relies in the existence of a programming
model that allows the integrated programming of heteroge-
neous systems, predicting the performance of the applications

on those systems. Meanwhile there are several programming
models dealing with FPGA-based heterogeneous systems [15],
[6], [1], [10], [16], [8], there has been less work in the literature
regarding the performance prediction of heterogeneous appli-
cations. Indeed, most of those works cover the prediction of a
kernel performance on an FPGA [13], [14], [18] and only few
of them analyze full application performance prediction. The
RC amenability test (RAT) [12] is a system that tries to predict
the suitability of an application to be ported to an FPGA,
in order to avoid the work if the outcome is foreseeable as
non successful. Another performance prediction technique [17]
addresses the modelling of shared heterogeneous workstations
containing reconfigurable computing devices. This methodol-
ogy chiefly concerns the modelling of system level, multi-
FPGA architectures. However, it does not take into account
the selection among several different application kernels or
the interactions between them in a given parallel application.

Other works propose electronic system level timing and
power estimation that combines system-level timing and power
estimation techniques with platform-based rapid prototyp-
ing [11], [19]. However, the annotated task has to be spec-
ified in a particular language and/or has to be mapped to a
specific component of the system. In our work, the same task
can be annotated in C/C++ language with OpenMP-like task
directives, which is the standard shared memory programming
model. In addition, tasks can be annotated to be mapped, at
run-time, to different components of the heterogeneous system
depending on the scheduling policy.

To the best of our knowledge the work presented in this
paper is the only one that deals with those kernel selection
and performance prediction challenges that require a run-time
analysis of the application and the prediction of complex,
irregular task dependency execution patterns.

III. METHODOLOGY

In this section we present the methodology proposed in
this paper to reduce the developer effort to map complex
applications to heterogeneous parallel systems with FPGAs.
OmpSs programming model makes easy the programmability
of applications with kernels (pieces of code, functions or
not) that may be executed in both CPUs and FPGAs [10] as
offloaded tasks, transparently to the programmer, by writing
simple pragma directives. Note that, as commented above,
the automatic generation of the different granularities and the
architecture configurations (number of accelerators for each
kernel) is beyond of the scope of this paper contribution.
Therefore, the granularity of the tasks and target devices
where those tasks could be run should be indicated by the
programmer. The decision of where those tasks are executed
is automatically done at run-time.

Figure 1 shows an example of an OmpSs blocking matrix
multiplication. As it can be observed in the first line of the
code, the mxmBlock kernel has been annotated as it can be
executed in both FPGA and SMP. The second line of the code
specifies that this function will become a OmpSs task (with
input and output dependences) any time it is called in the
code. With these annotations, the OmpSs runtime can take
care of scheduling different instances of the kernel, when their
dependences are ready, in both resources based on availability.
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# pragma omp t a r g e t d e v i c e ( fpga , smp )
# pragma omp t a s k i n ( [ BS∗BS ]A, [ BS∗BS ]B)\

i n o u t ( [ BS∗BS ]C)
vo id mxmBlock ( REAL ∗A, REAL ∗B , REAL ∗C)
{

i n t i , j , k ;
f o r ( i =0 ; i < BS ; i ++)

f o r ( k =0; k < BS ; k ++) {
REAL tmp = A[ i ∗BS+k ] ;
f o r ( j =0 ; j < BS ; j ++)

C[ i ∗BS+ j ] += tmp ∗ B[ k∗BS+ j ] ;
}

}

vo id matmul (REAL ∗∗AA, REAL ∗∗BB, REAL ∗∗CC, i n t NB)
{

i n t i , j , k ;
f o r ( k = 0 ; k < NB; k ++)

f o r ( i = 0 ; i < NB; i ++)
f o r ( j = 0 ; j < NB; j ++)

mxmBlock (AA[ i ∗NB+k ] ,BB[ k∗NB+ j ] ,\
CC[ i ∗NB+ j ] ) ;

}

Fig. 1. Matrix multiplication annotated with OmpSs directives. matmul
is the blocking matrix multiplication function, and mxmBlock performs the
matrix multiplication of a block.

However, even if the translation from C to HDL is done
automatically with Vivado and OmpSs is used to schedule the
mxmBlock tasks to the best available computing unit, the
problem of how to partition the work remains. How many
instances of the mxmBlock should be implemented in the
available hardware? How big should be any of the instances? Is
it worth to implement two instances of a different size? Indeed,
in the presence of several possible kernels to be mapped to the
FPGA when all of them will not fit, which ones have to be
mapped to maximize the application performance? The expert
programmer may have an idea of which is the best combination
and reduce the number of possible implementations to few
of them (tens). However, those few implementations may
mean hundreds of hours if each of them implies one or more
bitstream generations.

In order to answer those questions a coarse-grain perfor-
mance estimator toolchain has been developed. This perfor-
mance estimator toolchain combines instrumentation based on
source to source compilation, high level synthesis from C code
and a heterogeneous task-based dataflow parallel simulator
developed to estimate the heterogeneous parallel performance
of OmpSs code with heterogeneous tasks. This simulator has
Extrae [3] instrumentation support that allows it to generate
Paraver [4] traces, allowing the programmers to have an
approximate visualization of what one would expect in a
real task execution on an heterogeneous system. Extrae is a
instrumentation library that generates time events, thread states
and communications in a raw trace that can be translated to
a Paraver trace format. In this work we have integrated the
simulation with a modified version of the Extrae so that Extrae
can take the timing of the simulation. Paraver is a tool that
allows performance analysis of parallel execution traces at
different levels of granularity: thread, task, MPI process, etc.

Figure 2 shows the overall steps of the developed

Fig. 2. Coarse-Grain Performance Estimator Toolchain

toolchain. The parallel programmer has to provide the OmpSs
code with the annotation of the tasks and the granularity he/she
wants to evaluate. As we mentioned above, the parallel pro-
grammer should have an idea of which are the most potential
combinations of tasks, reducing the amount of possible task
mappings and granularities. The automatic generation of the
different granularities is beyond of the scope of this paper
contribution. However, a starting programmer may need to
analyze a large number of granularities and mappings, and in
this case, a sytem to automatize the design space exploration
would be helpful [11].

The first step of the toolchain is to (1) transform the
OmpSs code to a sequential instrumented code, and (2) extract
the kernel code of each task annotated by the programmer.
Both these steps are automatically performed by a source
to source compiler from the original OmpSs code. Once the
instrumented sequential code has been obtained it is executed
in order to obtain a trace of tasks that will be used for
the performance estimation. The information contained in
the trace will be joined with hardware timing information
(estimated cycles and clock frequency) obtained from passing
the extracted kernel codes through Vivado HLS and fed to
our heterogeneous performance estimator that simulates the
dynamic behavior of a preconfigured system (a particular
implementation of the application in the Zynq board in our
case) and returns not only the estimated time used by the
given application in the selected hardware configuration but
also a Paraver trace that can be visualized in order to further
analyze the possible bottlenecks of the design. The whole cycle
only takes few minutes and can be repeated as many times as
necessary until all the possibilities have been explored. Finally,
the best implementation can be chosen and the time consuming
process of the hardware bitstream generation is done only
once. The next section further explains how the performance
estimation is done accurately enough to obtain useful results
for the programmer’s hardware/software co-design decision.

IV. IMPLEMENTATION

In order to obtain enough information from the OmpSs
code, this is first transformed into an instrumented sequential
code by source to source compilation. During this transforma-
tion, the directives of OmpSs are replaced with instrumentation
of the tasks to be able to generate a task execution trace
that will contain the following basic information: task number,
creation time and elapsed execution time in cycles in the CPU
based machine, number of dependences of the task, and for
each dependence: the data dependence memory address and
a label indicating the direction (input, output or inout) of the
dependence, and finally, task name for later identification in
the performance estimator toolchain.
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The basic trace, generated by the execution of the in-
strumented sequential code, should be completed with further
information. First of all, the cost of creation of a task has
to be added. Each OmpSs task has a creation cost that is not
generated by the instrumented sequential code. Therefore, each
task instance of the task execution trace needs to be preceded
by its creation cost (creation cost task), that will be run (in
the simulation) only in the SMP device (independently if the
task is executed in the FPGA or in the SMP). The original task
instance in the trace will depend on the new creation cost task.
Next, the information of the devices where each task can be
executed and the latency of those should be also added. With
this objective, the extracted kernels are used in order to obtain
the latency of the hardware accelerators of those tasks that
can be run, based on programmer annotation, in the FPGA.
The latencies estimated for the computation and the input and
output transfers are obtained by passing the extracted task code
through the Vivado HLS, which, in few seconds, can generate
the HDL code and a report with all the information required
for this task code:

• Estimated number of cycles of the computation of the
task in the FPGA

• Estimated number of cycles spent transferring the
input/output parameters of the task to the FPGA

Using that information, each of the task instances that appears
in the basic trace is completed with more information that
states that the task can be also run in a hardware accelerator,
and with the latency of the associated hardware accelerator.

Further specific information, related to the system where
the programmer wants to execute the OmpSs code, should
be taken into account to complete the trace. For instance, it
should be evaluated if the system can overlap input and/or
output DMA memory transfers (between the shared memory
and the local memory in the accelerators) among different
hardware accelerators. However, this analysis only needs to
be done once. If the transfers can be done in parallel the
input and output data transfer latencies can be added to the
computational latency of the hardware accelerator associated
to this task. Otherwise, DMA memory transfer tasks will be
created and run in a shared hardware resource device to avoid
possible overlapping of input/output transfers. Those extra
tasks will have dependences with the corresponding tasks run
in the device. In the case of our target architecture, the Zynq
706 board, and the current environment analyzed, the input
parameters seem to scale with the number of accelerators, but
not the output parameters. Figure 3 shows the speedup obtained
when using 2 accelerators compared to 1 accelerator to transfer
the same amount of input and output memory data: 512Kbytes
and 1024Kbytes. Therefore, the time associated with a task
running in a hardware accelerator device can be seen as the
time of the input data DMA transfer plus the computation
time. This information, together with the time this task lasts
in a SMP core, will be part of the information of this task in
the trace. However, the output DMA memory transfer cost will
be represented by an new transfer task that will be run in a
shared hardware resource device to avoid possible overlapping
of output transfers, since no overlapping seems to be allowed.
This output transfer will have an dependence with the original
tasks run in the device.

Fig. 3. Speedup of using 2 accelerators vs 1 accelerator for the input/output
data transfers on the Zynq 706 Board for two different amounts of data.

On the other hand, each of those DMA transfers has to be
programmed in software from the SMP device. This software
cost may not be able to be done in parallel since they have to
use shared resources. Then, DMA programming tasks (submit
tasks) that will be run in a special device, shared among all
the hardware accelerators, are created for each input/output
transfer. The original task will depend on the input submit
tasks and the output submit tasks will depend on the original
task.

Once the trace has been completed with all the above in-
formation, the heterogeneous parallel architecture performance
estimator can simulate the execution of all the tasks (original,
creation cost, and DMA related tasks) in a dataflow manner
for a given configuration of the hardware. That is, it will take
care about the task input, output, and inout dependences and
will run them as soon as their dependences are ready and a
device that can execute them is available. The task dependency
management is done the same way that the OmpSs runtime
software system does. The performance estimator toolchain
can be run, for an specific transformed trace, under different
hardware configurations based on the programmer annotations.
As a result, the Paraver traces generated by the estimator will
allow the programmer to choose the best estimated combina-
tions of software and hardware accelerators.

V. EXPERIMENTAL SETUP

Results in Section VI have been obtained on a Zynq All-
Programmable SoC 706 board. Timing of the applications has
been obtained by instrumenting with gettimeofday the part
of the code that calls several times the kernel code. Results
show the average elapsed execution time of 10 application
executions on the Zynq 706 board under linux.

The OmpSs implementation is based on Mercurium
1.99.4 and Nanos++ 0.8. For the hardware compilation
branch we have used the Xilinx ISE Design 14.7 and
the Vivado HLS 2013.2 tools. The estimator has been
developed with support for Extrae Library 2.5.1 and
Paraver 4.3.5. The Paraver was used to analyze the
estimated execution traces. All OmpSs codes have been
compiled with the arm-xilinx-linux-gnueabi-g++
(Sourcery CodeBench Lite 2011.09-50) 4.6.1
and arm-xilinx-linux-gnueabi-gcc (Sourcery
CodeBench Lite 2011.09-50) 4.6.1 compilers,
with "-O3" optimization flag.

We show real execution and estimator results for 2 tiled
applications: matrix multiply (Figure 1) and cholesky (Fig-
ure 4), using different fpga task granularities for the tiles
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(blocks): 64 × 64-block single-precision floating point matrix
multiply (fine-grained tasks), 128×128-block single-precision
floating point matrix multiply and 64 × 64-block double-
precision floating point cholesky decomposition. In the case
of the cholesky decomposition three out of four of the kernels
are annotated to be able to be run in the SMP and also the
FPGA. The fourth one has not been considered to be mapped
to the FPGA by the programmer. All real data generated by
the Vivado HLS has been synthesized with IEEE-754 standard
compliance.

# pragma omp t a r g e t d e v i c e ( fpga , smp )
# pragma omp t a s k i n ( [ BS∗BS ]A) i n o u t ( [ BS∗BS ]C)
vo id d s y r k ( d oub l e ∗A, d ou b l e ∗C , i n t BS ) ;

# pragma omp t a s k i n o u t ( [ BS∗BS ]A)
vo id d p o t r f ( d o ub l e ∗A, i n t t , i n t BS ) ;

# pragma omp t a r g e t d e v i c e ( fpga , smp )
# pragma omp t a s k i n ( [ BS∗BS ]A) i n o u t ( [ BS∗BS ]B)
vo id d t r sm ( d ou b l e ∗A, d o u b l e ∗B , i n t t , i n t BS ) ;

# pragma omp t a r g e t d e v i c e ( fpga , smp )
# pragma omp t a s k i n ( [ BS∗BS ]A, [ BS∗BS ]B)\

i n o u t ( [ BS∗BS ]C)
vo id d t r sm ( d ou b l e ∗A, do u b l e ∗B , do u b l e ∗C,\

i n t t , i n t BS ) ;

vo id c h o l l l ( do ub l e ∗∗AA, i n t t , i n t NB, i n t BS )
{

f o r ( i n t k = 0 ; k < NB; k++ ) {
f o r ( i n t j =0 ; j<k ; j ++)

d s y r k (AA[ j ∗NB+k ] , AA[ k∗NB+k ] , BS ) ;

d p o t r f (AA[ k∗NB+k ] , t , BS ) ;

f o r ( i n t i = k +1; i < NB; i ++)
f o r ( i n t j =0 ; j<k ; j ++)

dgemm (AA[ j ∗NB+ i ] ,AA[ j ∗NB+k ] ,\
AA[ k∗NB+ i ] , t , BS ) ;

f o r ( i n t i = k +1; i < NB; i ++)
d t r sm (AA[ k∗NB+k ] , AA[ k∗NB+ i ] , t , BS ) ;

}
}

Fig. 4. Cholesky application annotated with OmpSs directives. Each of the
function calls will be a task instance (dsyrk, dtrsm, dtrsm: SMP and
FPGA, dpotrf: SMP only).

VI. RESULTS

In this section, a coarse-grain comparison of the estimator
and real execution results is shown. The comparison is done
varying relevant aspects in the design of heterogeneous parallel
applications for FPGA based architectures, highlighting the
analysis time required in our proposed methodology.

In the case of the tiled matrix multiplication we show a
performance estimation that evaluates three different possible
design decisions. The first one is to select between two
different task granularities (64x64 blocks and 128x128 blocks)
for the task kernel mxmBlock in Figure 1. Second, it is
evaluated the difference between using one or two accelerators
for running 64x64 mxmBlock tasks. Having two accelerators

for the 128x128-block case has not been considered in the
evaluation because the hardware resource estimation for two
128x128-block mxmBlock accelerators indicates that it is not
feasible to map them into the programmable logic. Finally, we
have considered the performance impact of allowing heteroge-
neous execution (mxmBlock task is specified with SMP and
FPGA) or not.

Figure 5 shows the performance results of the commented
cases for both the estimator and the real execution. Results are
normalized with respect to the slowest case (one accelerator
of 128x128 blocks and with heterogeneous execution - label
1acc 128 + smp in the figure). Although estimator and
real execution have different absolute speedups (our estima-
tor does not consider memory hierarchy aspects like cache
coherence and pinning of memory pages, neither memory
contention, etc.), results show the same speedup trends. That
allows the programmer to adapt her/his OmpSs program to
have 128x128 mxmBlock tasks with the FPGA as the only tar-
get device. This decision can be taken after less than 5 minutes
of work (coffee break), that is what the analysis requires under
the proposed methodology. Figure 6 shows the time (seconds)

Fig. 5. Estimation and real matrix multiply performance comparison for
different hardware configurations of the system and task configurations.

in logarithmic scale for the analysis of the configurations
under our proposed methodology (left) and the traditional
hardware-software design cycle (right). In particular, for the
traditional design cycle, we only count the hardware generation
of the different accelerators and combinations. The hardware
generation time required for the full-analysis is more than 10
hours. On the other hand, the performance estimator toolchain
lasts for less than 5 minutes and automatically provides the
best choice among the considered configurations.

In addition to this decision, the programmer may want to
do a depth analysis of the performance estimation using the
Paraver traces generated in the estimation process. Paraver
traces can be visualized and compared to detect potential
bottlenecks in the parallel and heterogeneous execution of the
tasks. Figure 7 shows the Paraver view of four estimated
task execution traces for four different configurations shown
in Figure 5 with the same time scale; from top to bottom:
1 acc 128x128, 2 acc 64x64, 2 acc 64x64 + SMP and 1 acc
128x128 + SMP. Paraver traces show the execution of the tasks
(original and additional ones) in the devices, along the time
(x-axis). Each Paraver trace shows an horizontal bar for each
of the devices. First horizontal bar shows SMP task executions
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Fig. 6. Matrix Multiplication analysis time compared to hardware generation
time of the hardware accelerators.

Fig. 8. Cholesky task dependecy graph for number of blocks equal to 4.

(original and creation tasks), last two bars show tasks running
on shared locked resources (output DMA memory transfer
from the FPGA, and DMA programming - submit) and the rest
of the bars show mxmBlock tasks executed in the accelerators.
The analysis shows that the current scheduling policy does not
help to improve the performance when running mxmBlock in
both SMP and FPGA. The high cost of executing the SMP
version of the task compared to the FPGA version may be
translated into a huge load imbalance problem if a wrong
scheduler decision is taken. This has a significant impact in
the case of 1 acc 128x128 running in both SMP and FPGA.

In the case of the tiled cholesky we have evaluated
different resources distribution approaches between kernels
that execute interleaved due to the complex nature of the
cholesky dynamic graph (Figure 8). In order to simplify the
example, the task granularity is fixed (64x64 blocks) and we
have only evaluated which kernels should or should not be
accelerated in the FPGA (note that to further complicate the
scheduling, the application even has tasks - dpotrf task of
Figure 4 - that can only be run in the SMP). As it is shown
in Figure 9, the same speedup (normalized to the slowest
configuration) trends are obtained in both estimated and real
performance. The first three bars show the performance im-
pact of implementing accelerators that try to maximize the
usage of the hardware resources of the programmable logic
(FR-dgemm, FR-dsyrk, FR-dtrsm, where FR stands
for full resources), which limits the number of accelerators
that fit in the hardware to one and forces all the other kernels
to be executed in the SMP. The last set of three bars evaluate

the performance of all the possible combinations of two tasks
among three annotated with target FPGA (dgemm+dgemm,
dgemm+dsyrk, dgemm+dtrsm) as the configuration only
supports two accelerators.

Fig. 9. Estimation and real cholesky performance comparison for different
hardware configurations of the system and task configurations.

The programming productivity gain of the tiled cholesky is
much more significant. A full analysis of those combinations
requires one day and a half compared to less than 10 minutes
with our methodology. Indeed, this day and a half is just
for hardware generation time, no execution time is included
neither creating the hardware design and integrating it to the
rest of the application.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the current status of a
heterogeneous parallel performance estimator that can help
to potentially reduce the development effort in heterogeneous
parallel computing systems like the Zynq All-Programmable
SoC. The methodology is currently implemented for OmpSs
applications and Zynq SoC. OmpSs is a task-based dataflow
parallel programming model that helps to express heteroge-
neous task decompositions of an application. Thus, the pro-
grammer can annotate the application with OmpSs directives
to identify tasks and the target devices where those tasks
can be executed at run-time. Based on this information, our
methodology estimates which is the best hardware-software
partitioning of the annotated tasks on the Zynq Soc in few
minutes. Results show that the best configurations and OmpSs
annotations chosen by our estimation correspond with the real
ones for the evaluated applications and configurations. And
although the current performance estimator toolchain could
be extended to automatically take care of different numbers
of resources (e.g. the number of channels between the FPGA
and the memory, cache coherence impact, etc), and explore
different design space exploration strategies, the current im-
plementation already shows speedups of more than two orders
of magnitude (minutes vs days) on the process of achieving
high heterogeneous performance for complex applications like
cholesky.

Future work is to integrate power-efficiency and look-ahead
scheduling heuristics into the simulator as well as helping the
programmer with the hardware/software partitioning strategy
to improve performance and/or area for a broader set of
application domains.
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Fig. 7. MxM performance estimator traces for heterogeneous task executions running on 1 or 2 accelerators and none/one SMP. Blocksizes: 64x64 and 128x128.
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[11] K. Grüttner, P. A. Hartmann, T. Fandrey, K. Hylla, D. Lorenz, S. Stat-
telmann, B. Sander, O. Bringmann, W. Nebel, and W. Rosenstiel.
An ESL timing & power estimation and simulation framework for
heterogeneous socs. In XIVth International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation, SAMOS
2014, Agios Konstantinos, Samos, Greece, July 14-17, 2014, pages 181–
190. IEEE, 2014.

[12] B. Holland, K. Nagarajan, C. Conger, A. Jacobs, and A. D. George.
Rat: A methodology for predicting performance in application design
migration to fpgas. In Held in Conjunction with SC07, HPRCTA ’07,
pages 1–10, 2007.

[13] T. Jeger, R. Enzler, D. Cottet, and G. Troster. The performance
prediction model - a methodology for estimating the performance of
an fpga implementation of an algorithm. In Technical report, 2000.

[14] D.-U. Lee, A. Gaffar, O. Mencer, and W. Luk. Optimizing hardware
function evaluation. Computers, IEEE Transactions on, 54(12):1520–
1531, Dec 2005.

[15] W. A. Najjar and J. R. Villarreal. Fpga code accelerators - the compiler
perspective. In DAC, page 141, 2013.

[16] The Portland Group. PGI Accelerator Programming Model for Fortran
& C.

[17] M. C. Smith and G. D. Peterson. Parallel application performance on
shared high performance reconfigurable computing resources. Perfor-
mance Evaluation, 60(1):107–125, 2005.

[18] C. Steffen. Parametrization of algorithms and fpga accelerators to
predict performance. Proc. Reconfigurable System Summer Institute
(RSSI), pages 17–20, 2007.

[19] M. Streubhr, R. Rosales, R. Hasholzner, C. Haubelt, and J. Teich. Esl
power and performance estimation for heterogeneous mpsocs using
systemc. In FDL, pages 1–8. IEEE, 2011.

[20] Xilinx. Zynq UltraScale+ MPSoC, Aug. 2015.
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-
mpsoc.html.

41



DESIGNING HARDWARE/SOFTWARE SYSTEMS FOR EMBEDDED
HIGH-PERFORMANCE COMPUTING
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ABSTRACT

In this work, we propose an architecture and methodology
to design hardware/software systems for high-performance
embedded computing on FPGA. The hardware side is
based on a many-core architecture whose design is gener-
ated automatically given a set of architectural parameters.
Both the architecture and the methodology were evaluated
running dense matrix multiplication and sparse matrix-
vector multiplication on a ZYNQ-7020 FPGA platform.
The results show that using a system-level design of the
system avoids complex hardware design and still provides
good performance results.

I. INTRODUCTION

Computing requirements of embedded systems are
rapidly increasing with stringent real-time requirements,
together with low power and low cost. Single processor
solutions are unable to provide the required performance
and at the same time keep the power consumption low.
Hardware/software architectures where the most computa-
tional demanding parts of the application run in dedicated
hardware have shown very good performance, area and
power efficiencies.

While efficient, hardware/software architectures are in
general difficult to obtain since designing dedicated hard-
ware for a specific algorithm in FPGAs requires hardware
expertise. From the perspective of the software program-
mer, an automatic flow to design and configure the hard-
ware/software architecture is essential.

In this work, our approach is to use a configurable
hardware coprocessor whose design is generated automat-
ically after being parameterized by the programmer. The
coprocessor consists of a many-core architecture that is
automatically generated and integrated with the embedded
processor. The many-core coprocessor is configurable in
the number of cores, the system memory (number and
size of local memories, cache and interfaces to external
memory) and the topology of the interconnection network
(Network-on-Chip, ring or simply point-to-point connec-
tions). The number and type of arithmetic operations of
each core, number formats, including floating-point and

integer can also be configured. Each core has local memory,
an arithmetic unit and input/output interfaces. Keeping the
core simple permits to explore more parallelism, reduces
power consumption and makes configuration easier. The
design and programming of the architecture was integrated
in a proposed design flow that starts with the algorithm
specification and outputs the hardware/software system to
be implemented in a SoC FPGA.

Constraining the hardware design space to a hardware
template may reduce the performance compared to a fully-
optimized solution. However, it typically provides a good
tradeoff between hardware performance, hardware porta-
bility and design time.

The paper is organized as follows. Section 2 describes
the state-of-the-art in tools and architectures to design hard-
ware/software processing architectures for FPGAs. Section
3 describes the proposed hardware/software architecture.
Section 4 describes the proposed architecture design flow.
Section 5 shows the results obtained and section 6 con-
cludes the paper.

II. RELATED WORK

Many commercial and academic tools have been pro-
posed to raise the design synthesis level of FPGAs and
therefore reduce the design time and design efforts. High-
level synthesis tools exist to generate hardware from C/C++
(C-to-Verilog [5], Catapult-C [3], Mitrion-C [4], ImpulseC
[2], HandelC [1], Xilinx AutoESL, etc), SystemC (Blue-
spec [6], Xilinx AutoESL), Java (JHDL [7], MaxCompiler
[8]), Python (MyHDL [9]), among others.

The most common approach for hardware compilation
is to start with C/C++, with some language restrictions to
avoid recursions and pointers. Compiler techniques were
proposed to generate an optimized design for specific
hardware platforms. For some large designs the generated
hardware obtained with these tools were able to achieve
better optimized hardware implementations compared to
hand-made solutions.

In these tools, additional annotations are used in the
code to control some implementation options. The compil-
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ers extract as much as possible instruction-level parallelism
that can be exposed using techniques like loop unrolling
and pipelining. These compilers automatically generate the
hardware but programmers must be aware of the hardware
programming model which requires some knowledge on
circuit design.

Another research direction for hardware design consists
of using overlays that implement an intermediate reconfig-
urable architecture within the user logic of the FPGA. In
[10] and [12] programmable overlays are used to increase
the performance of DSP workloads on FPGA. In [11]
the viability of a GPU-like overlay for FPGA was ana-
lyzed. However, whether GPU-like programming models
and architectures are a good way to design many-cores on
FPGA is yet to be checked. Also, if not carefully designed
these overlays will run with low sustained performances
compared to their peak performances.

Our proposal for the design of hardware/software high-
performance embedded systems is to consider the hard-
ware side as a many-core coprocessor. The coprocessor
architecture is configurable at a system-level where the
programmer only has to specify system-level parameters,
like, the number of cores, the numerical precision of the
arithmetic units, among others. Each core runs from simple
to complex arithmetic operations, like vector multiplication,
matrix multiplication. These operations are part of a library
and new operations can be added through microcode pro-
gramming.

A few many-core designs on FPGA have already been
proposed. The MPLEM system [13] consists of Xilinx
MicroBlaze soft-core processors connected with On-chip
Peripheral Bus (OPB) buses. In [14] a system with 24
MicroBlaze cores interconnected with an Arteris NoC [15]
was proposed. The system was implemented in a Virtex-4
FX-140 FPGA.

Tumeo et al. [16] proposed a real-time many-core sys-
tem for automotive applications also based on Microblaze.
Each core contains local data memory and all cores share
an external RAM for shared data and instructions. Cores
can communicate through a bus-based shared memory, or a
message-passing subsystem built upon a crossbar module.

HeMPS-based systems [17] are homogeneous multi-
processor platforms using a network-on-chip (NoC) inter-
connection. Each processing element has a Plasma pro-
cessor [19], an internal RAM block, a network interface to
the NoC and a DMA engine. The platform is automatically
generated and the number of processors can be customized.
Design space exploration is based on simulation. Processors
are modeled using cycle accurate instruction set simulators
and local memories with C/SystemC models.

MARC (Many-core Approach to Reconfigurable Com-
puting) [18] is a many-core template comprising one con-
trol processor and multiple processors for running tasks as
SIMD (single instruction multiple data) units. Cores can
be configured as RISC processors or synthesized as full-

custom datapaths. Each core has local private memory and
have access to an internal shared memory. Processors are
interconnected with a network selected from a library with
various topologies, including crossbar and torus.

SMYLEref [21] is a many-core architecture for embed-
ded systems prototyped in FPGA. The architecture consists
of multiple clusters arranged in a two-dimensional array
connected with a NoC. Each cluster has a number of
scalar processors connected with a local bus. Each core
has dedicated instruction and data L1 caches. A second
layer of cache exists in each cluster shared by all cores.
The processor core is a Geyser [22].

Most of these many-core proposals rely on general-
purpose embedded processors as the core unit. This in-
creases flexibility but decreases performance and area
efficiency. In approaches, like MARC, it is possible to
customize the processor with a dedicated datapath that
requires hardware design, but the results are still far from
the peak capacity of the FPGA. Design space exploration is
not specified in most approaches, but HeMPS, for example,
uses ISS and system level simulation models to explore
different platforms.

In our architecture, the core elements are based on
simple processing units with reduced control, small local
memories and arithmetic units. Each core unit can be
individually configured in terms of local memory size
and number and type of arithmetic operations. This per-
mits to improve performance and area efficiency when
compared to many-core architectures based on general-
purpose embedded processors. We consider a customizable
interconnection network that can be a bus, a crossbar, a
NoC or a ring, and that can use point-to-point connections
and/or a mix of these topologies. We rely on SystemC to
do the design space exploration. We model the many-core
platform and the algorithm using SystemC and do system
level simulations to help in design space exploration.

III. HARDWARE/SOFTWARE MANY-CORE
ARCHITECTURE

The proposed hardware/software architecture consists
of an embedded processor and the many-core architecture
(see figure 1).

The many-core has access to external memory through
a DMA that is configured by the embedded processor.
The DMA is responsible for sending/receiving data to/from
memory and for forwarding this data to the network. In
order to improve the bandwidth when requesting elements
stored non-sequentially in memory, the DMA has a cache
to buffer bursts of data and thus enable faster access. Each
time non-sequential data is requested from memory, a burst
of sequentially-stored elements is fetched (cacheline size).
The first element of the burst is the data requested. This
data is immediately forwarded to the processors. The other
elements are stored in cache.

The cores are organized in clusters. Each cluster has
a local lite processor (local PE) to program the cores and
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the local DMA and control data communication; shared
memory and a local DMA to transfer data to/from the cores.
Cores are connected to the communication network through
input and output buffers. Input buffers are connected to the
FPU and to the local memory (aF and bF signals)

Each core has an arithmetic unit and a local data
memory (see Figure 2). The arithmetic unit can be stat-
ically or dynamically configured to execute a set of basic
functions: add/sub, multiplier, fused multiply-add, recipro-
cal, square root and inverse square-root [20]; and a set
of more complex functions: vector multiplication, block
matrix multiplication, etc. Each core can be configured with
a different combination of operations and new complex
operations can be added trough microprogramming. The
local memory is implemented with dual-port block RAMs
that are used to store temporary variables (registers are
implemented with this memory), coefficients to implement
some of the arithmetic operators, constants, and output
data.

IV. ARCHITECTURE DESIGN FLOW

A many-core generator was developed to automati-
cally generate the many-core architecture from a set of
architecture specifications. Also, an instance of the many-
core platform is also automatically modeled in SystemC
for a system level simulation to determine the number of
execution cycles considering different configurations of the
architecture. In this version, the code to run on the cores
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and to program the DMA are obtained manually (see figure
3).

The flow starts with the configuration of the architec-
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ture. The architecture may be simulated at system-level
for a specific algorithm. To do this, a SystemC model
of the architecture is automatically generated and then
the algorithm must be parallelized, modelled in SystemC
together with the architecture description. After these steps,
the many-core architecture is generated using a library
of cores and the software to run in the DMA and in
the cores is manually generated by the designer. Cores
are programmed with microcode instructions. The many-
core is then exported to XPS (Xilinx Platform Studio)
and integrated with the embedded processor present in the
ZYNQ platform.

The design space exploration process is manual, that
is, the designer is responsible for manually specifying
different configurations of the many-core architecture and
different algorithm parallelizations. The only automatic
processes are the generation of a SystemC description
of the architecture given a particular configuration of the
architecture and algorithm, and the generation of a VHDL
description of the many-core architecture to be synthesized
and its integration in the XPS from Xilinx to generate the
complete hardware/software embedded architecture. Along
the flow the designer does not have to design hardware
since the hardware is generated automatically.

V. RESULTS

To evaluate the flow and the architecture, we have
considered parallel algorithms for dense matrix multipli-
cation and sparse matrix-vector multiplication. For both,
we explored the design space looking for the best many-
core using the proposed flow. Both architectures were
implemented in a ZYNQ-7000 SoC XCZ7020-CLG484
and tested on a ZedBoard with this device.

V-A. Configuration of the Architecture for Dense Ma-
trix Multiplication

Matrix multiplication C = A×B is implemented as a
parallel block matrix algorithm that partitions C matrix into
smaller sub-matrices (blocks) and works with these blocks.
All matrices are square and have the same size (n× n).

The C matrix is divided in blocks with size n×xp. Each
of these blocks is calculated by p cores simultaneously.
Each core is responsible for a sub block with size n × x
which in turn is divided in smaller blocks with dimension
y×x. The size of these smaller blocks, Cij , depends on the
local memory size. To generate a block Cij the processor
multiplies a block y × n from matrix A with a block n×
x from matrix B. The multiplication is implemented as a
sequence of k partial block multiplications,

Cij =

k0∑
k=1

Aik ×Bkj (1)

Each partial block is the multiplication of a y × z sub
block Aik with a z×x sub block Bkj , resulting in a partial

sub block Cijk of size y×x. The final Cij result is obtained
after accumulating the k partial block results.

The partial block multiplications are implemented as
follows. First, each core receives and stores its Bqj ele-
ments. Then, Aiq elements are broadcasted to all cores.
As the Aiq elements arrive, they are multiplied by all Bqj

elements stored in local memory. The partial results of each
block Cij are also stored in local memory. In the final
iteration, the elements of the result block Cij are sent to
the external memory. As referred, the local memory in each
processor must store the blocks of B (size z × x) and C
(size x× y) under processing.

At the algorithmic level, x, y and z are variables and
thus different performance results are obtained by changing
these values. To optimize the final solution, we have
considered the theoretical results in [25] to determine these
values. According to the referenced theoretical results, the
number of communications with the external memory does
not depend on the dimension z of the sub blocks. Therefore,
z can be simply made equal to 1 in order to reduce the local
memory required. The local memory necessary to store the
sub blocks of B (size 1×x) is doubled in order to enable the
processor to store a new B sub-block while still performing
the computations with the former B sub-block.

Also according to this reference, the dimensions of the
sub blocks Cij that minimize the number of communica-
tions, as a function of the available local memory L, are

x =
L

2 +
√
p L

y =
√

p L (2)

At the architectural level, matrix multiplication requires
multiply and add operations. So, the arithmetic units of
all cores are configured as fused multiply-add. We have
configured the many-core with 16 and 32 cores, all with
the same local memory size and a DMA cache with support
for up to 16 cachelines.

Assuming an architecture with 32 KBytes of local
memory for the 16-core and 16 KBytes for the 32-core
architecture, we have determined the utilization of re-
sources and the number of execution cycles (see table I).
Both architectures achieve high performance efficiencies
(peak performance/measured performance), 86% and 84%,
respectively. The 16-core achieves 7 GFLOPs and the 32-
core achieves 13.4 GFLOPs.

Table I. Results for matrix multiplication
Core Arch. 16-cores Arch. 32-cores

LUTs 1,364 24,390 46,576
DSPs 4 71 135

BRAMs 8/4 140 140
Freq. (MHz) 250 250 250

Cycles — 77,772,668 39,796,887
Time (s) — 0.31 0.16
GFLOPs — 7 13.5

Peak GFLOPs 0.5 8 16
Efficiency — 86% 84%
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Compared to previous implementations, ours has about
half of the performance of the dedicated architecture for
matrix multiplication in [24], but consumes only about
25% of the resources. Doubling the number of cores of
our architecture would provide an architecture with the
same performance, assuming enough memory bandwidth.
In terms of efficiency, our architecture is better. We also
have higher efficiencies compared to the dedicated many-
core proposed in [23].

V-B. Configuration of the Architecture for Sparse Ma-
trix Multiplication

We have parallelized the sparse matrix-vector multipli-
cation algorithm to run in a many-core architecture. In this
paper, we briefly describe the parallelization process (See
[28] for a detailed explanation).

Sparse matrix-vector multiplication is the mathematical
operation given by

y = A× x

where matrix A is a sparse matrix, x is the input vector
and y the result of the product between A and x. Given
a matrix A of size n ×m, vector x is necessarily of size
1×m and vector y of size n× 1.

A matrix is typically stored as a two-dimensional array.
Each entry in the array represents an element Ai;j of
the matrix and is accessed by the two indices i and j.
Conventionally, i is the row index, numbered from top to
bottom, and j is the column index, numbered from left
to right. For an M × N matrix, the amount of memory
required to store the matrix in this format is proportional
to M ×N (disregarding the fact that the dimensions of the
matrix also need to be stored).

In the case of a sparse matrix, substantial memory
requirement reductions can be realized by storing only the
non-zero entries. Depending on the number and distribution
of the non-zero entries, different data structures can be used
and yield huge savings in memory when compared to the
basic approach. In this work we have used Compressed
Sparse Column (CSC). The compressed sparse column
format stores an initial sparse M ×N matrix A in column
form using three one-dimensional arrays.

Work attribution to cores was made by nonzero indexes.
This means that instead of row ranges, single rows were
attributed to each processor. This attribution is done in a
round-robin fashion.

To show that the work scheduling to processors in the
previous row assignment is balanced, tests using a data
set of matrices were run and the percentage of nonzeros
assigned to each processor was measured. Results indicate
that, for a system composed of four processors, the load
balancing measured by percentage of the total number of
nonzeros is around 25% for each processor, guaranteeing
a good work load balance.

In our design all necessary data to perform a sparse
matrix-vector multiplication is in external memory. There-
fore, the system implemented reads all data from external
memory and writes the result back to external memory. The
algorithm is scalable to any number of cores.

The DMA module is responsible for moving data be-
tween the external memory and the cores. The DMA is
controlled by micro instructions provided by the ARM
processor located in the Processing System through an AXI
General Purpose interface. The DMA unit is structured in
two independent modules which enable it to process read
and write operation simultaneously. Each core is composed
of an input buffer, a Fused Multiplier-Adder (FMA) and
local memory.

Table II represents the performance results obtained for
the sparse matrix-vector hardware implementation working
at an operating frequency of 100 MHz with two cores. With
the available bandwidth using more processors improves
marginally the execution time.

Table II. Performance results of the proposed architecture
Test name Maragal 2 flower 5 4 BIBD 14 7 LD pilot87

NNZ 4357 43942 72072 74949

M 555 5226 91 2030

NNZ per Col [0, 139] [1, 3] [21, 21] [1, 96]

ARM exec (us) 128 1644 2055 2222

HW exec (us) 94 1077 1438 1647

HW/ARM 1,18 1,31 1,43 1,35

Each column corresponds to a different test with differ-
ent matrix and vector inputs. NNZ stands for the number
of non-zero elements and M is then number of rows in the
input matrix. We also specify the number of non-zeros per
column (NNZ per Col).

We have extrapolated our system to determine its per-
formance for different memory bandwidths and compared
to previous works ([26], [29], [30], [31], [32] and [27]).
The average efficiencies determined are across different
input matrices. Our work, presents superior efficiencies
(from 44% to 66% on average) in all cases except when
comparing to [27] (90% efficiency) and [26] (80% of
efficiency). However, the efficiencies presented in [26] are
based on a different algorithmic solution and for very
specific matrices and the efficiencies presented in [27]
are theoretical without taking into consideration limitations
from architectural structures, like memory bandwidth, that
cannot be obtained as ideally assumed in the model.

VI. CONCLUSION

A configurable hardware/software architecture for high-
performance embedded computing was proposed. The
many-core architecture is configurable at system-level. A
design flow to automatically generate the hardware/soft-
ware architecture was also proposed that starts with the
configuration of the architecture and ends with the imple-
mentation targeting an FPGA.
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Previous proposals of many-core architectures for em-
bedded systems are based on general-purpose embedded
processors. Compared to our many-core, these systems
in general have a better support to run control intensive
kernels or threads but are less efficient for data intensive
applications in terms of performance and area. This is
because our cores are simpler and application optimized,
and can also support higher operating frequencies.

We have evaluated the architecture for parallel dense
matrix multiplication and sparse matrix-vector multipli-
cation. The results show that the architectures generated
achieves performances close to those of state-of-the-art
dedicated circuits and performance efficiencies near 90%
without requiring hardware expertise to design the many-
core architecture.
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Matrix Multiplication on High Density Virtex-7 FPGA”, in
International Conference on Field Programmable Logic and
Applications, pp. 1-4, 2013.

[26] Yan Zhang, Y.H. Shalabi, R. Jain, K.K. Nagar and J.D.
Bakos, ”FPGA vs. GPU for sparse matrix vector multiply”.
in International Conference on Field-Programmable Technol-
ogy, pp. 255- 262, 2009.

[27] R. Dorrance, F. Ren, and D. Markovic, ”A Scalable Sparse
Matrix-Vector Multiplication Kernel for Energy-Efficient
Sparse-Blas on FPGAs”, International Conference on FPGA,
pp. 161-169, 2014.

[28] João Pinhão, Wilson Maltez, Horácio Neto, Mário Véstias,
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Abstract—Heterogeneous systems consisting of general-
purpose processors and different types of hardware accelerators
are becoming more and more common in HPC systems. Especially
FPGAs provide a promising opportunity to improve both perfor-
mance and energy efficiency of such systems. Adding FPGAs to
clouds or data centers allows easy access to such reconfigurable
resources. In this paper we present our cloud service models
and cloud hypervisor called RC3E, which integrates virtualized
FPGA-based hardware accelerators into a cloud environment.
With our hardware and software framework, multiple (virtual)
user designs can be executed on a single physical FPGA device.
We demonstrate the performance of our approach by implement-
ing up to four virtual user cores on a single device and present
future perspectives for FPGAs in cloud-based data environments.

Keywords—Cloud Computing; Field Programmable Gate Ar-
rays; High-Level Synthesis; Virtualization.

I. INTRODUCTION

Multi-core and multi-threaded processors were in recent
years combined with special dedicated hardware accelerators
to improve the performance of applications. It is foreseeable
that the future of hardware development lies in more and
more massively parallel architectures as used in embedded
as well as high performance systems [1]. Especially field-
programmable gate arrays (FPGAs) provide an energy-efficient
way to achieve high performance by tailoring hardware directly
to the application.

Numerous application areas requiring high processing
capability employ simple computation cores, data structures
and algorithms which are highly suitable for the utilization of
FPGAs. In particular the use of reconfigurable hardware to
accelerate computationally intensive applications has increased
steadily over the last decade [2]. FPGAs provide customized
hardware performance and low power consumption which
makes them interesting for the field of high performance
computing and leads to the new discipline of high performance
reconfigurable computing (HPRC) [3].

Due to the growing deployment of reconfigurable hardware
as accelerators in HPC systems and data centers, it is necessary
to simplify the access to such resources and to increase
their usability. One possible solution is provided by the
integration of reconfigurable hardware in cloud architectures.
Cloud computing is a key technology with the potential to
transform the whole information technology industry. The idea
is in the end that “using 1,000 servers for one hour costs no
more than using one server for 1,000 hours“ [4]. Providing

reconfigurable hardware in such way can raise its acceptance in
many scientific and economic fields by accelerating application.

In contrast to conventional computing resources, the integra-
tion of reconfigurable hardware into a cloud infrastructure often
proves to be difficult and is currently a topic of research only.
This article describes our concept for the flexible integration
of FPGAs in a multi-user system, making them available to a
broader group of users as a cloud service in a data center.
For this purpose, the provision in a distributed multi-user
environment and a central administration is necessary [5].
We also introduce our concept of virtual FPGAs (vFPGA),
which enables one physical FPGA to host multiple vFPGAs
from different users simultaneously. Our approach increases
the utilization and efficiency even for small user designs.

A resource management system for physical and especially
virtual FPGAs cannot work efficiently without an integrated
computing framework providing a virtualization environment.
Thus, we implement a fully integrated computing framework,
allowing easy access to the FPGA resources through common
interfaces on hardware and software level and achieving high
throughput communications. The virtualization necessary to
provide up to four virtual user designs on a single device
is another important feature of our approach. Transferring
an application or an algorithm to reconfigurable hardware
requires fundamental and profound understanding of the
hardware. To reduce the development time of computationally
intensive applications, an integration of state-of-the-art high-
level synthesis (HLS) tools is necessary and also part of the
framework.

The following Section II introduces comparable concepts
and related research in the field of reconfigurable hardware
in cloud architectures and computing frameworks. Section III
gives an overview on cloud service models. Section IV shows
the implementation of our resource management system with an
overview of our FPGA computing framework. As an example,
an algorithm is transferred to the FPGA using HLS in Section V.
Section VI concludes and gives an outlook.

II. RELATED WORK

Reconfigurable hardware such as FPGAs can be used in data
centers for hardware acceleration of special applications with
simple data structures and streams. In these cases the reason for
the use of FPGAs lies, in addition to their high processing speed,
mainly in the comparatively low energy consumption compared
to graphic processing units (GPUs) and common processors

Copyright is held by the author/owner(s).
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(CPUs). For cloud services, it is furthermore possible to use
FPGAs for anonymization of user requests [6] and to increase
security [7]. The integration of reconfigurable hardware in cloud
architectures is shown in [8]. An example for the integration
of hardware accelerators in the open source cloud management
system OpenStack is shown in [9]. A comparable contribution
with stronger focus on the transfer of applications into an
FPGA grid for high performance computing is shown in [10].
Both applications focus on a single cloud service model with
a background acceleration of applications using FPGAs.

A cloud integration of reconfigurable resources requires the
virtualization of the resource FPGA. The VirtualRC [11] uses a
uniform hardware/software interface to realize communication
on different FPGA platforms. BORPH [12] takes a similar
approach with a homogeneous interface for hard- and software.
The FPGA paravirtualization pvFPGA [13] uses a profound
integration of an FPGA device driver in a Xen virtual machine.

Furthermore, there exists a number of frameworks for FPGA
hardware accelerators with different features. These range from
simple PCIe implementations which provide memory transfers
[14, 15], to complex frameworks that also incorporate the
integration of DRAM and allow for dedicated computational
cores [16, 17]. The cores can be generated by external high-
level synthesis tools. The OpenCPI framework [17] includes
hardware-specific modules such as PCIe, Ethernet and DDR
memory, in which the user application is embedded as a
computing core in a data flow architecture. Also Leap [18]
presents an interesting framework with a so-called FPGA
operating system as management core and the possibility to
transfer an application to the FPGA using HLS.

Another related topic which has been arising in recent
years are the so-called remote laboratories. Their idea is it to
access FPGAs in a server room from the workplace or even
from home. Such systems are mainly used in universities for
teaching and research purposes [19, 20]. These concepts offer
the opportunity to share lab resources by time multiplexing,
and to save lab equipment, space and costs [20]. Such systems
are a kind of special FPGA cloud architecture in a university
and education environment [21].

In contrast to the systems mentioned, our aim is it to build
a system with various cloud service models enabling remote
FPGA labs for university education, hardware acceleration for
HPC and also background acceleration for data centers with
multiple users on the same physical FPGA.

III. OVERVIEW AND CLOUD SERVICE MODELS

The main component of our system is the hypervisor
RC3E introduced in Section IV. It manages the resources
and provides access to the FPGA devices. The hypervisor
is complemented by our computing framework RC2F realizing
the virtual partitioning of the FPGAs. By this, multiple users
can share the same physical device to maximize utilization.
Both the framework and the interface between user applications
on hard- and software are presented in Section IV-D.

The crucial point of an integration of FPGAs into a cloud
architecture is it to define possible application areas and service
models. Before we describe our cloud architecture’s hard- and
software level, we discuss service models for FPGAs in a cloud
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Figure 1: The three service models provided in our cloud
environment. In the RSaaS model, users can allocate full
physical FPGAs. The RAaaS- and BAaaS model allow multiple
concurrent user designs on a single physical FPGA.

environment. In the following we introduce three key service
perspectives and compare them with the definition of service
models in cloud computing [22]. Fig. 1 gives an overview of
our three models and their user-modifiable components.

A. Reconfigurable Silicon as a Service – RSaaS

Providing full access to the reconfigurable resource, in this
model the user can allocate a complete physical FPGA and
can implement the hardware of his choice. Allocation and
programming are possible with the management framework
provided in Section IV. For hardware interface and driver
development fully virtual machines with the necessary FPGA
devices attached are allocatable by users.

The allocation of vFPGAs is also possible and increases
the utilization and efficiency even for small user designs. In
this model the whole development flow is provided as a cloud
service. The ability to run multiple design flows simultaneously
can greatly reduce design exploration time. Parallel to the
software flow, the implementation on real hardware including
validation and test can be performed on different FPGAs. Since
the model allows users to reconfigure the FPGA, it opens new
attack vectors that do not exist in current cloud environments.
The concept can be compared to the cloud service models
Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS).

Application areas include for example education and re-
search. It is possible to access FPGAs in a server room from
the workplace or even from home, which offers the opportunity
to share lab resources and to save lab equipment, space and
costs [19, 21, 23].

B. Reconfigurable Accelerators as a Service – RAaaS

Another model with less freedom for the user is the
Reconfigurable Accelerators as a Service (RAaaS) model, which
is inspired by the HPCaaS concept. In this model the FPGA
is used as a simple hardware accelerator and is accessible via
the computing framework we introduce in Section IV-D. Only
vFPGAs of different sizes are visible, allocatable and useable
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by the user. The framework provides a communication API on
the host as well as FIFO and memory interfaces on the FPGA.
The user only has to design the computation core inside the
vFPGA and a host program to send and receive data, which
reduces development time and optimizes the design process.
Such restrictions furthermore have the advantage that the system
is significantly safer than the RSaaS model. The RAaaS model
can be compared to the PaaS model.

The concept is suitable especially for research- and
development-oriented applications as in this field a limitation
of hardware resources can be a bottleneck. Our resource
management system provides an integrated batch system
for long-running applications without direct user interaction.
Moreover, a host program can be submitted to a batch system
and program the vFPGA region by itself.

C. Background Acceleration as a Service – BAaaS

Our third model is suitable for applications and services
running in common data centers. The vFPGA is not directly
visible or accessible by the users. Instead, available applications
and services are visible. These services are using vFPGAs
in the background to accelerate specific applications. The
pre-build bitfiles and host applications are offered by the
cloud service provider. Resource allocation and vFPGAs
reconfiguration occurs in the background using our resource
management system. Because this model provides concrete
service applications to the user, it is similar to the Software
as a Service (SaaS) model. Application areas include security
relevant tasks [6, 7] and in particular computationally intensive
routines.

IV. RECONFIGURABLE COMMON CLOUD COMPUTING
ENVIRONMENT

The Reconfigurable Common Cloud Computing
Environment – RC3E – is our FPGA hypervisor and
grants access through a middleware. The system includes
resource management and monitoring of FPGA resources.
In the following we introduce the FPGA cloud’s hardware
architecture in Section IV-A, the hypervisor’s software
architecture in Section IV-B and Section IV-C. Our FPGA
computing framework is presented in Section IV-D and the
typical design flow is described in Section IV-E.

A. Hardware Infrastructure

Our infrastructure consists of nodes with one processor
each and up to two physical FPGA boards. The FPGAs
are tightly coupled to the processors using PCIe, nodes are
connected to each other via Gigabit Ethernet interconnect. To
avoid communication bottlenecks, which may be caused by
applications requiring communication between FPGAs, the
FPGAs can directly access the global interconnect. The basic
structure is a modification of the concept we introduced in [5].
Each physical FPGA can host up to four virtual FPGAs. The
system is accessible via a service and management node. Our
current architecture consists of two nodes using Xilinx ML605
and VC707 development boards.
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Figure 2: Architecture of the resource management and hy-
pervisor RC3E with additional components (batch system and
virtual machines).

B. Hypervisor

In traditional cloud architectures the hypervisor allows users
to run their guest operating systems using virtual CPUs. In our
approach the hypervisor allows users to implement and execute
their own hardware designs on virtual FPGAs (service models
RAaaS and BAaaS in Section III). The RSaaS service model
additionally allows for an individual operating system with a
physical FPGA.

Due to the existence of multiple nodes, physical FPGAs
and also vFPGAs, our RC3E hypervisor acts as a resource
manager with load distribution. The overall structure of the
RC3E hypervisor is shown in Fig. 2. The hypervisor has access
to a database containing all physical and virtual FPGA devices
in the cloud system and their allocation status. Each device
is assigned to its physical host system (node). If each of the
three service models are offered in the cloud simultaneously, all
FPGA devices have to be assigned to the RAaaS/BaaS model
with vFPGAs and the RC2F framework or to the RSaaS model
where framework and virtualization are optional.

In the RAaaS/BaaS service model the FPGAs are configured
with a basic design containing the RC2F framework, which
provides a PCIe endpoint and basic device status information
(see Section IV-D). If no vFPGA is allocated and the device is
not allocated, most of the clocks in this design are disabled to
reduce power consumption. The resource manager always tries
to minimize the number of active vFPGAs and to maximize
the utilization of physical FPGAs to thereby reduce energy
consumption. In the RSaaS service model the user can allocate
a complete physical FPGA, which has to be marked separately
in the device database (and is therefore excluded from vFPGA
allocations).

C. Middleware

The RC3E hypervisor is running on the management node
and can access each FPGA node. Users can access the cloud
services directly through a middleware with a command line
interface on the management node. A client middleware running
on a client machine will be added in a future version. It
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Table I: Latency of local and remote FPGA status calls and
bitstream configuration.

RC2F Status Configuration* PR
Local without RC3E 11 ms 28.370 s 732 ms
Local/Remote Node over RC3E 80 ms 29.513 s 912 ms

* Configuration using JTAG and USB
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Figure 3: Interaction of middleware, RC3E hypervisor, RC2F
user software application and the RC2F framework with the
user design on a vFPGA.

is possible to run applications with FPGA acceleration and
pre-build bitfiles in the background (BAaaS) without direct
allocation of the FPGA resource by the user. The RAaaS model
often requires direct interaction, which makes direct allocation
of vFPGAs or physical FPGAs with the RC2F framework
necessary via the middleware. FPGA configuration and the
execution of host applications on the node with the allocated
FPGA are possible with separate commands. In both cases,
vFPGA configuration is realized by partial reconfiguration (PR).

The RSaaS model allows full access to the allocated FPGA,
but allocation, configuration and execution are performed by the
middleware. As the hypervisor implements PCIe hot-plugging
by restoration of the PCIe link parameters after reconfiguration,
the user can also change the PCIe endpoint on the FPGA.
Fig. 3 shows the process of resource allocation, programming,
initialization and execution. The overhead caused by the RC3E
framework is shown in Table I.

In a typical cloud environment there are always sufficient
hardware resources to meet user demands. As our academic test
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Figure 4: RC2F design with partial reconfiguration areas
integrated into a host system.

architecture consists of only two nodes with four FPGAs, we
integrated a batch system for long-running applications without
direct user interaction to improve overall system utilization.
A job of the batch system is to specify the type as well as a
configuration file for the FPGAs. Furthermore, we integrated the
allocation of user-specific virtual machines with direct access to
allocated FPGAs as an extension of the RSaaS service model.

D. Computing Framework – RC2F

Hardware acceleration using FPGAs in a cloud environ-
ment requires, in addition to resource management and user
administration, a framework realizing the vFPGA concept and
allowing integration of user cores. We therefore provide the
Reconfigurable Cloud Computing Framework – RC2F – which
is fully integrated into our RC3E environment and provides
high communication throughput using PCIe. The framework is
typically used in our RAaaS and BAaaS models.

1) Hardware Design: In the RSaaS service model the user
has the freedom to implement the hardware of his choice.
Such kind of model opens new attack vectors which can cause
physical or functional damage to the system. Thus, writing full
bitstreams should only be allowed in research (and educational)
systems. The preferred basic design for the RAaaS and BAaaS
model in our cloud is provided by our RC2F framework and is
shown in the lower left part of Fig. 4. The design can provide
up to four vFPGAs with independent user designs.

The main part of the RC2F framework consists of a
controller managing the configuration and the user cores as
well as the monitoring of status information. The controller’s
memory space is accessible from the host through the API
and on the FPGA via dedicated control signals (full reset, user
reset, test loopback, etc.). In- and output-FIFO for streaming
applications providing high throughput and memory interfaces
for configuration are provided as user interfaces. Table II
shows the components’ resource utilization of the components
for implementations with up to four vFPGAs. On a Xilinx
Virtex 7 XC7VX485T the resource utilization for a basic design
providing four vFPGAs is less than 3%.
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Table II: Resource utilization of the individual components for
up to four vFPGAs, throughput and memory latency.

Component LUT FF BRAM Latency Throughput
Core (max)

PCI Endpoint 3,268 3,592 8
RC2F Control (gcs) 125 255 1 0.198 ms

1 vFPGA 3,689 3,127 4
Total 7,082 6,974 13 0.208 ms ≈ 798 MB/s
Utilization*(%) 2.3 1.2 1.3
2 vFPGAs 4,414 3,790 8
Total 7,807 7,637 17 0.221 ms ≈ 397 MB/s
Utilization*(%) 2.6 1.3 1.7
4 vFPGAs 5,139 4,471 16
Total 8,532 8,318 25 0.273 ms ≈ 196 MB/s
Utilization*(%) 2.8 1.4 2.3

* Xilinx VC707 evaluation board with a XC7VX485T

2) Communication Interface and Host API: The main
communication between FPGA and host is implemented using
PCIe. The low-level implementation is based on an IPCore
providing simple device files on the host and FIFO as well
as memory interfaces on the FPGA [24]. The throughput of
the core is limited to 800 MB/s and will thus be replaced
in further versions. Fig. 4 gives an overview of the system
divided in host/FPGA and user-/systemspace. The figure also
shows the FPGA design with PCIe, RC2F core with global
configuration space (gcs) and user cores. As interface to the
user cores, a user configuration space (ucs) for user-definable
commands is implemented as dual port memory. Streaming
access is implemented using asynchronous FIFOs, which also
divide the system clock from the user clock. Both components
together serve as interfaces between the partial reconfiguration
areas. The latency for a configuration memory access (gcs in
the RC2F module and ucs in the vFPGAs) and the maximal
throughput of the FIFOs for concurrent data transfers are shown
in Table II.

On the host the FPGA is accessible by PCIe drivers which
provide separate device files for each FIFO and each memory.
The RC2F host API interacts with the RC3E hypervisor and
provides access to the user-allocated resources without a direct
user interaction with the device files. For security reasons the
device files are protected by access rights. Because of this
additional virtualization layer concurrent users can interact
with their allocated devices without influencing each other.

The API calls are inspired by the interaction between host
and GPU in the NVIDIA CUDA programming environment
[25] or the OpenCL [26] framework. The three basic types
are (a) global device control, status query and configuration,
(b) user kernel control, status query and reconfiguration and
(c) data transfers. Due to security reasons only the RSaaS
service model allows such interactions.

E. Design Flow

The service models using the RC2F framework are also
inspired by the CUDA design flow. Separating computation into
hardware and software components, the hardware components
will be implemented on the FPGA using Xilinx Vivado HLS
and will interact with the software components on the host
through our API. The entire design flow is shown in Fig. 5. In
addition to the RC2F host-library, a HLS library is necessary
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Figure 5: Design flow starting from an application consisting
of host program and C-Function as input for HLS.

to provide an integration of the user HLS design into the RC2F
hardware and the vFPGAs. HDL components are required
for the hardware user interface in the FPGA design. Further
extensions of the system will include debugging and tracing of
user designs on physical FPGAs.

V. EXAMPLE APPLICATION AND PERFORMANCE RESULTS

In this section an example application is transferred to a
vFPGA using HLS and the presented framework. As application
we choose a matrix multiplication which offers both high
amounts of data and computational complexity. Moreover, we
convert the application to work with a streaming-optimized
interface inside our RC2F framework. To reach high throughput
we stream the data necessary for 100,000 matrix multiplications
through the core. Table III gives an overview of the resources
necessary for a 16 × 16 matrix multiplication with up to four
user cores and a 32 × 32 matrix multiplication with up to two
user cores.

The host application starts individual parallel user threads
sending matrices to the cores, measures runtime and calculates
the throughput. For a 16 × 16 multiplication the throughput
of a single core is compute limited by about 509 MByte/s.
Two cores on the same physical FPGA share the bandwidth
of 800 MByte/s, which results in a communication bottleneck
with a throughput of 398 MByte/s per core and in almost the
same runtime as a single core. Four simultaneous user cores
affect each other significantly stronger, but in the end the overall
performance and the utilization of the physical FPGA is much
more efficient.

VI. CONCLUSIONS AND OUTLOOK

This paper presents a way to integrate FPGAs as a resource
into a cloud environment and to make them available to multiple
users. Three possible cloud service models are introduced
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Table III: Matrix multiplication Streaming performance (32 Bit
Float) with up to four cores (100,000 multiplications each).

Design Area Runtime Throughput
LUT FF DSP BRAM per Core per Core

16 × 16
1 vCore 25,298 41,654 80 14 0.73s 509 MByte/s
2 vCores 44,408 76,963 160 19 0.86s 398 MByte/s
4 vCores 81,761 146,974 320 28 1.41s 198 MByte/s
32 × 32

1 cCore 64,711 125,715 160 14 3.27s 279 MByte/s
2 vCores 123,249 245,103 320 19 3.43s 277 MByte/s

and integrated into our hypervisor RC3E, allowing resource
management for virtual FPGA resources using predefined
regions on real devices. The resource management is expanded
in a subsequent step by a batch system and by the ability to
allocate virtual machines.

Furthermore, a framework is presented which aims at
simplifying the development of computationally intensive
applications on FPGAs. In contrast to other approaches the
framework is fully integrated into our hypervisor, which
significantly increases virtualization possibilities. On a Xilinx
Virtex 7 XC7VX485T the resource utilization for a basic
design providing four vFPGAs is less than 3%. The paper
concludes with an example application using our framework
and showing the performance tradeoff between flexibility of
virtualized FPGA resources and a dedicated system.

One of the most important next steps is it to introduce
a profound security concept for the system. At the moment
the RC3E hypervisor works with access protection and only
authorized users can program their allocated device. In the
future we plan to implement sanity checking for (partial) bitfiles
to avoid both damage by a tampered bitstream and access to the
parts not reconfigurable by the users as for example physical
ports. Such security aspects are essential for the integration of
FPGAs into a productive cloud environment.

In future we plan to improve the hypervisor, the security
of the system and we will provide debugging opportunities.
Furthermore, we will implement a more profound virtualization
of the FPGA devices. Currently, both information about the
FPGA type and a free predefined vFPGA region are necessary
for design flow. We will try to hide these information from the
user and to manipulate the partial configuration file to utilize
every feasible vFPGA region. A migration of user designs
between vFPGAs and physical FPGAs is also intended.
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Abstract—In the near future FPGAs will be available by
the hour, however this new Infrastructure as a Service (IaaS)
usage mode presents both an opportunity and a challenge: The
opportunity is that programmers can potentially trade resources
for performance on a much larger scale, for much shorter periods
of time than before. The challenge is in finding and traversing
the trade-off for heterogeneous IaaS that guarantees increased
resources result in the greatest possible increased performance.
Such a trade-off is Pareto optimal. The Pareto optimal trade-off
for clusters of heterogeneous resources can be found by solving
multiple, multi-objective optimisation problems, resulting in an
optimal allocation of tasks to the available platforms. Solving
these optimisation programs can be done using simple heuris-
tic approaches or formal Mixed Integer Linear Programming
(MILP) techniques. When pricing 128 financial options using a
Monte Carlo algorithm upon a heterogeneous cluster of Multicore
CPU, GPU and FPGA platforms, the MILP approach produces
a trade-off that is up to 110% faster than a heuristic approach,
and over 50% cheaper. These results suggest that high quality
performance-resource trade-offs of heterogeneous IaaS are best
realised through a formal optimisation approach.

I. INTRODUCTION

Heterogeneous clouds are forming. With the use of FPGA-
acceleration in a web-based, commodity application [1], as
well as the maturation of heterogeneous computing standards,
such as OpenCL and OpenSPL; Graphics Processing Units
(GPUs) and Field Programmable Gate Arrays (FPGAs) are
making inroads in High Performance Computing (HPC) data-
centres. As a result, providers are mulling Infrastructure-as-a-
Service (IaaS) heterogeneous platforms, and it will soon be
possible to make use of diverse heterogeneous accelerators
without ever having to own any physical hardware. In this
paper, we identify and address a central challenge of this
new usage mode: partitioning work within a cluster of het-
erogeneous computing resources. In doing so, we demonstrate
that IaaS FPGAs and GPUs can integrate with and enhance
Multicore CPUs in the HPC context.

In the past, HPC programmers targeting heterogeneous
platforms were limited by the resources that could be traded
for performance. The design space that these programmers
inhabited was distorted because any implementations were
constrained to the handful of devices that capital resources
would allow. Heterogeneous IaaS offers the opportunity to

Multicore CPUs

110% Faster,
53% Cheaper

Increasing
Heterogeneity 

Fig. 1: Latency vs Cost trade-off for 128 option pricing tasks
running on 16 heterogeneous Infrastructure-as-a-Service (IaaS)
platforms. Full details of the platforms are in Table II.

interact with a performance-resource trade-off that seamlessly
incorporates both capital and operating costs for a much finer
time quantum. As opposed to thinking of using a few devices
over a period of years, programmers can now target many more
devices for only a few hours.

To realise the opportunity of heterogeneous IaaS, signifi-
cant implementation challenges have to be overcome. Designs
are required that efficiently trade device resource utilisation
for improved performance for a wide range of heterogeneous
hardware targets [2], [3]. Furthermore, programmers now also
have to partition their computational workload across multiple
designs running on potentially hundreds of heterogeneous
devices. We suggest that this is a partitioning problem, similar
to selecting the mapping of subtasks to different architectures
or partitioned between software and hardware.

Our initial assumption is that many workloads are com-
posed of multiple, atomic (non-communicating) tasks, as ev-
idenced by the popularity of frameworks such as Pig for
Apache Hadoop, and algorithms such as Monte Carlo in
computational finance. Furthermore, efficient hardware designs
can be realised using heterogeneous computing standards and

Copyright is held by the author/owner(s).
2nd InternationalWorkshop on FPGAs for Software Programmers
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High Level Synthesis tools. In light of these trends, we propose
that the partitioning problem for atomic tasks is best addressed
using a formal, multi-objective optimisation approach. The
trade-off between performance and resource use is realised
by varying the allocation of tasks to platforms. The output
of this optimisation process is a Pareto optimal trade-off
between the total cost of devices used and a measure of
performance achieved. A trade-off that is Pareto optimal allows
programmers to achieve greater performance in exchange for
a higher cost.

In this paper, we show how to achieve a Pareto optimal
cost-performance trade-off for multiple atomic tasks upon
multiple, heterogeneous IaaS compute devices. In Figure 1 we
illustrate our work with the latency-cost Pareto optimal trade-
off for a large computational finance computation of 128 option
pricing tasks running on 16 heterogeneous IaaS platforms.

Thus, in this paper we:

1) show how the performance-cost design space for IaaS
FPGA resources can be formalised into multiple,
multi-objective ILP problems.

2) describe how ILP approaches as well as “common-
sense”-based heuristics can be applied to solving
these optimisation problems, and so generate the
trade-off.

3) evaluate our proposed ILP trade-off generation ap-
proach against heuristics using a real workload of 128
financial option pricing tasks upon a heterogeneous
cluster incorporating 16 CPU, GPU and FPGA-based
Platforms from three major IaaS providers.

Our evaluation shows that a heterogeneous set of plat-
forms can significantly outperform its constituent platforms.
Furthermore, adopting an ILP approach to partitioning versus
a heuristic one achieves a 110% latency improvement and 50%
cost improvement in the best case, and performs no worse in
the worst case. As the highly performing partitions achieved
using the ILP approach illustrate, HPC datacentres of the future
should be heterogeneous, and workload partitioning is best
done using a formal optimisation approach.

The section that follows provides a brief review of rele-
vant background material on cloud computing usage models,
as well as previous work on workload partitioning in dis-
tributed computing contexts. We then describe our proposed
approach to the partitioning problem: the necessary resource
and performance prediction models; formalising the problem
as an ILP; outlining our ILP approach for addressing it as well
a heuristic approach. We evaluate the partitioning approaches
using a workload of financial option pricing tasks upon a het-
erogeneous cluster of Multicore CPU, GPU and FPGA-based
servers. Finally, we conclude and make recommendations for
future work.

II. BACKGROUND

A. Cloud Computing Usage Models

Currently there are two dominant utility or “cloud” com-
puting models: application services, and IaaS [2]–[4]. In the
application mode, users pay for access to a service, such as
Gmail or SAP, that is provided using computing resources that

TABLE I: Comparison of IaaS offerings. Providers are Mi-
crosoft Azure (MA), Google Compute Engine (GCE) and
Amazon Web Services (AWS). Prices as of April, 2015.

Provider
Instance
Type

Instance
Name

Time
Quantum
(minutes)

Theoretical
Peak
Performance
(GFLOPS)

Rate
($/hour)

MA CPU A4 1 416 0.592
GCE CPU n1-highcpu-8 10 ≈400 0.352
AWS CPU c3.4xlarge 60 883 0.924
AWS GPU g2.2xlarge 60 2289 0.650

are hosted in a datacentre owned by the service provider, or
that the service provider has leased from a IaaS provider.

IaaS providers, such as Amazon Web Services (AWS),
Google Compute Engine (GCE) or Microsoft Azure (MA),
allow for compute resources to be leased directly. These re-
sources are abstracted as virtual servers or instances, accessed
via the Internet using protocols such as SSH, which the
user may then configure with the desired software. Resources
are priced using a rate quoted on a per instance type, per
time increment or quantum basis. This rate reflects both the
operating and capital expenses of the resources of that instance
for the time quantum as well as the provider’s profit margin.

The key characteristics of some of the instances from the
most popular IaaS providers are reported in Table I. A key
feature of each offering is the length of the time quantum, i.e.
the minimum increments of time for which the user will be
charged. We also observe that the rate reflects performance
within the CPU category, hence an instance with twice the
peak compute capability of another will roughly cost twice as
much.

However, a further observation is that between heteroge-
neous device categories, such as CPUs and GPUs, the link
between pricing and performance does not hold. For example
the AWS GPU instance listed theoretically offers an extremely
attractive performance to cost ratio relative to traditional CPUs,
but is priced in the middle of the CPU price range.

B. Workload Partitioning for Heterogeneous Computing

The problem of partitioning computational tasks across dis-
tributed, heterogeneous computing resources has been widely
studied. The general scenario often considered in the literature
is a set of atomic tasks being partitioned across multiple
platforms of different capabilities [5], [6]. In this scenario, it
is assumed that if a task is allocated to a resource, it will fully
occupy that resource until completed. The partitioning is also
performed statically, in advance of the tasks’ execution, using
estimates of performance metrics.

More recent work has considered dynamic allocation dur-
ing task runtime [2], [3], however this effectively takes the
form of static allocation performed on a regular interval with
updated task information.

In the atomic task allocation scenario, the general objective
is to optimise a measure of performance, often the workload
latency or makespan. The makespan is the latency between
when the first task is initiated until the last result returned.
As the tasks are being evaluated on multiple platforms, the
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makespan is equivalent to the latency of the platform that takes
the longest to complete its assigned tasks.

Two of the suggested approaches in the literature to the
performance optimisation problems: Naive Heuristics [2], [5] -
a simple algorithm is applied to allocate tasks to the available
resources. The quality of the partitions produced are highly
dependent on the particular tasks and platforms concerned.
Integer Linear Programming [6] - the partitioning problem
is formulated as an optimisation program which can then be
solved using ILP techniques, such as the branch and bound
algorithms as well as multiple heuristics.

Generally heuristic approaches have been the most studied.
Braun’s comprehensive study [5] found that simpler heuristics
achieve better results than more complex ones. We suggest
that this indicates that the truly optimal approach is case-
specific, dependent upon subtle dynamics between the task
and platforms concerned. ILP appears to be an understudied
approach, usually applied only in environments of pressing
resource constraint [6]. This lack of attention is likely due to
the NP-hard complexity of ILPs in general, and NP-complete
in the binary case, prompting concerns over the uncertainty of
the time spent finding a solution.

III. OUR PARTITIONING APPROACH

In this section we describe our approach to partitioning
workloads of atomic tasks across heterogeneous IaaS resources
so as to achieve a Pareto optimal trade-off between resource
use and performance. Throughout our explanation, we use
the example of Monte Carlo algorithm-based, financial option
pricing tasks.

A. Latency and Cost Models

As described in the previous section, partitioning ap-
proaches require some estimation of the critical task char-
acteristics, such as the makespan and financial cost. Hence,
models of these characteristics have to be used to predict the
performance of the available implementations.

The latency and cost models that we use in Monte Carlo
option pricing tasks are given in Equation 1.

L(N) = βN + γ (1a)

C(L(N)) =

⌈
L(N)

ρ

⌉
π (1b)

The latency model given in Equation 1a is a linear one,
comprised of proportional (βN ) and constant (γ) terms. The
constant term reflects the overhead in initiating the task on a
platform, incorporating time spent in communication, device
configuration in the FPGA case, etc. The proportional term
grows with the input variable (N ), reflecting the growth in the
number of operations as the task increases in scale. This model
reflects the O(N) complexity of the Monte Carlo algorithm,
and would need additional polynomial terms for tasks that are
more computationally complex.

To find the values of the latency model coefficients (β and
γ), we propose a benchmarking procedure for all of the tasks
upon all of the available target devices, using a set of N and
latency values, as well as weighted least squares regression to
solve for the model parameters, β and γ.

The cost model given in Equation 1b reflects the IaaS
model described in the previous section. The task latency
is divided by the time quantum (ρ), which is then rounded
up. This is then multiplied by the platform rate (π). As
this model is expressed in terms of the latency model, it is
easily generalised, provided an appropriate latency model is
available.

Equation 2 describes how we suggest finding the rate (π)
for IaaS FPGAs in the current absence of observable market
prices.

π =DBR× RDP

DBR =(TCO + PM)
ρ

P

(2)

The rate is given by the Device Base Rate (DBR), which is the
cost per device in the datacentre for the specified time quantum
(ρ), scaled by the Relative Device Performance (RDP), the
performance of the device relative to the other devices of the
same type in the datacentre, as per the precedent observed in
the market currently. The DBR is given by the annual total
cost of ownership for that device (TCO) plus the profit margin
(PM) scaled by the time quantum (ρ) to year (P ) ratio, i.e. ρ

P .
To find the TCO, we suggest using a total cost of ownership
model for datacentres, such as the simple model published by
the Uptime Institute [7].

B. Latency Minimisation on a Budget

The models in the previous subsection describe a single
Monte Carlo task upon a single platform. In this subsection
we show how these models can be used to trade between
characteristics for a workload of τ tasks upon a cluster of
µ platforms.

A task-platform allocation could be binary, of whole tasks
to platforms. However this doesn’t take advantage that tasks
are often composed of parallel subtasks. If the degree of
parallelism, such as N in the Monte Carlo case, in the set
of tasks is sufficiently large, then such an allocation can be
real-valued between 0 and 1, representing the proportions of
tasks allocated to different platforms. By allowing this relaxed
allocation, we can cast the partitioning problem as a financial
cost constrained, Mixed ILP makespan optimisation problem.
Equation 3 gives our formulation of this problem, with the cost
constraint (Ck) and task-platform allocation (A).

minimise
A∈Rµ×τ

+

FL(~GL(A))

subject to
µ∑
i=1

Ai,j = 1 j = 1, 2, . . . , τ

FC(~GC(A)) ≤ Ck Ck ∈ R+

(3)

where:

FL(~GL(A)) = max(~GL(A))

~GL(A) = ((β ◦N) ◦A+ γ ◦ dAe) · 1
β,γ ∈ Rτ×µ+ ,N ∈ Zτ×µ+

FC(~GC(A)) = 1T · ~GC(A)

~GC(A) = ~π ◦

⌈
~GL(A)

ρ

⌉
~π ∈ Rµ+
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The Latency and Cost models for the financial option
pricing tasks that were given in Equation 1 are captured in
what we define as the task reduction functions, ~GL(A) and
~GC(A), which provide the platform latency and cost for
a given allocation (A). In both task reduction functions, ◦
represents the Hadamard or entrywise product of matrices or
vectors.

In what we define the platform reduction functions,
FL(~GL(A)) and FC(~GC(A)), the platforms’ characteristics
are combined to a scalar value. In the latency case, this is
the makespan, while for financial cost this is the total IaaS
utilisation cost.

Many formal optimisation frameworks such as SCIP [8]
accept problems in the form given in equation 3, however they
do not support non-linear objective or constraint functions such
as the maximum and ceiling functions used in the platform
latency (FL(~GL(A))) and cost reduction ( ~GC(A)) functions.
We now show how these non-linear functions can be captured
in equation 4.

minimise
A∈Rµ×τ

+

FL

subject to
µ∑
i=1

Ai,j = 1 j = 1, 2, . . . , τ

~GL(A) ≤ FL
Ai,j ≤ Bi,j
B ∈ {0, 1}µ×τ , i = 1, 2, . . . , µ, j = 1, 2, . . . , τ

~GL,i(A)

ρi
≤ Di ~ρ ∈ Zµ+, ~D ∈ Z

µ
+, i = 1, 2, . . . , µ

FC( ~D) ≤ Ck Ck ∈ R+
(4)

where:
~GL(A) = ((β ◦N) ◦A+ γ ◦B) · 1

β,γ ∈ Rτ×µ+ ,N ∈ Zτ×µ+

FC( ~D) = ~DT · ~π ~π ∈ Rµ+

We have transformed the non-linear functions in the par-
titioning problem into additional dependent variables and
constraints. Firstly, an additional real variable (FL) is intro-
duced that is constrained to being greater than all of the
individual platform latencies, capturing the maximum function
in platform reduction function (FL(A)). A binary variable
(B) greater than or equal to the allocation variable, captures
the ceiling function in the latency task reduction function
(~GL(A)). Finally an integer variable (D) captures the ceiling
function in the cost reduction function (~GC(A)).

C. Finding the Latency-Cost Tradeoff

The previous subsection describes how to minimise latency
for a single, fixed cost constraint, however we seek a method
for finding the resource-performance trade-off. The previously
described program can be used to find such a trade-off by using
ILP evaluation tools such as SCIP [8], through the ε-constraint
method as described by Kirlik et al [9]. By contrast, we also
describe a heuristic approach to finding different resource-
performance trade-off points.

For our example of a latency-cost trade-off, the same
procedure for both the ILP and heuristic approaches is given
below.

1) Find the upper cost bound (CU ): For the ILP approach
this can be found by minimising the latency without the
cost constraint, i.e. FC( ~D) ≤ Ck, as this will give the
maximum cost on the Pareto curve. Heuristically, this can be
found by dividing work inversely proportional to the individual
makespans of the available platforms.

2) Find the lower cost bound (CL): For both the ILP
and heuristic approaches, the lowest cost possible is found by
allocating all the tasks to the single platform that completes
all of the tasks as cheaply as possible. This gives the lowest
cost on the Pareto curve.

3) Iterate between CL and CU : For ILP, as per ε-constraint
method, run the program outlined in Equation 4 for a set of cost
constraints (Ck) spaced evenly between the upper and lower
bounds, for the desired degree of granularity. For the heuristic
approach, a linear combination of the normalised latency-cost
product can be used each platform. As the weighting of the
cost is increased, the trade-off should move from CU to CL.

IV. EVALUATION

We now evaluate the claims that we have made with regards
to modelling task-device latency and cost characteristics in
advance, the efficiency of different partitioning approaches
and finally, the generation of a Pareto trade off for cost and
performance.

A. Experimental Setup

1) Tasks: The computational workload that we used is the
pricing of 128 financial option pricing tasks using the Monte
Carlo algorithm. The algorithm is compute bound, with ran-
dom generation accounting for the bulk of the computations.
In addition to all of the option pricing tasks being independent,
the simulations within each task can be computed in parallel,
hence these can be split between multiple platforms. The
fixed parameters for the pricing task operations were generated
from within the values from the Kaiserslautern option pricing
benchmark1. The number of simulations per Monte Carlo task
(N ) was set so as to achieve an accuracy of $0.001 for each
task.

2) Platforms: Table II provides the details of the hetero-
geneous cluster that we have used. The cluster is largely
made up of Maxeler and Altera FPGA accelerator boards that
communicate with the host using PCIe. The FPGA platforms
were programmed using both the OpenSPL and OpenCL het-
erogeneous computing standards, and the Maxeler and Altera
High Level Synthesis tools. The two CPUs are those provided
by MA and GCE, and are programmed using POSIX and GCC,
while the GPU is provided by AWS and programmed using
OpenCL and the Nvidia SDK. The rate for the FPGA devices
was calculated using Equation 2, with the parameters given in
Table III, and the RDP weighting for each device calculated
using the relative application performance.

1http://www.uni-kl.de/en/benchmarking/option-pricing/
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The heterogeneous standards deliver portable performance:
the same OpenSPL designs delivers similar performance upon
the two platform targeted, despite being implemented on
FPGAs from different vendors. Similarly, the difference in
performance between the OpenCL GPU and FPGA implemen-
tations can be explained almost entirely by the difference in
clock rate, suggesting performance portability across device
architectures.

3) Software Framework: For task implementation, ex-
ecution and partitioning, we used the Forward Financial
Framework2(F 3), an Open Source, Python-based Financial
Application Framework. F 3 allows for financial problems
to be expressed using a library of domain specific objects.
The problems can then be evaluated on range of distributed,
heterogeneous platforms efficiently [10].

To support the partitioning of tasks, we have extended F 3

to partition workloads using the approaches in Section III.C.
To support the ILP approach, we used SCIP [8] as a black-box
Mixed ILP optimiser, with Equation 4 as the input program.

B. Method

First we verified the models that we used as inputs into
our partitioning approaches. To verify the cost model, we
applied the same cost methodology to the IaaS offerings from
Amazon as well as a hypothetical FPGA datacentre. For the
latency model, we measured the relative error of the latency
predictions for 10 minutes of benchmarking. We used heuristic
and ILP approaches to finding partitions for our computational
workload for multiple budgets, including the lower and upper
cost bound. Finally, we used the partitioning approaches to
generate latency and cost curves using the model data as
inputs. We then ran the resulting partitions on our experimental
hardware that make up the curve, verifying the validity of the
partitioner outputs.

C. Results and Discussion

1) Cost and Latency Models: Our latency model is verified
in Figure 2. The relative error of the latency predicted versus
that seen in reality is within 10% for problems many times the
size of the benchmarking subset used. As we will show below,
this is sufficiently accurate to generate a workload partition.

We have verified our cost model in Table III. We used
the Uptime Institute’s datacentre cost model updated to 2015
prices, applied to create hypothetical CPU3, GPU4 and FPGA5

IaaS offerings. We have compared the CPU and GPU to AWS’s
IaaS offering.

The relatively lower capital recovery periods we used for
CPUs and GPUs reflect the faster development cycle of these
devices as well as the competitive IaaS market. The number of
devices given is the number that would fit within the standard
datacentre in the Uptime Institute’s model.

Both the GPU and CPU rates are very close to those
observed in reality, however both are several percent below

2https://github.com/Gordonei/ForwardFinancialFramework
3Full CPU model: http://bit.ly/1IdJgNg
4Full GPU model: http://bit.ly/1GbKVlT
5Full FPGA mode: http://bit.ly/1MKjGmc
6http://aws.amazon.com/ec2/pricing/

1.0 2.0 4.0 8.0
Runtime to Benchmark Scale Ratio

(Runtime Simulations/Benchmark Simulations)

10-2

10-1

100

101

102

R
el

at
iv

e 
La

te
nc

y 
Er

ro
r (

%
)

Multithreaded CPUs
OpenCL GPU
Maxeler Xilinx FPGAs
Maxeler Altera FPGAs
OpenCL Altera FPGAs

Fig. 2: Latency model prediction error characterisation

TABLE III: Cost model applied to CPUs, GPUs and FPGAs

Parameter FPGA Model GPU Model CPU Model
Device Capital Cost $5370 $3120 $2530

Energy Use 50W 135W 115W
Number of Devices 5181 5181 5181

Capital Recovery Period 5 years 2 years 2 years
Charged Usage 80% 80% 90%
Profit Margin 20% 20% 20%

Calculated Device Rate $0.46/hour $0.64/hour $0.50/hour
Observed Device Rate6 - $0.65/hour $0.53/hour

those seen in the market. This is most likely due to an
underestimation of the operating costs of the datacentre.

2) Partition Generation: In Table IV, the latency is given
for three cost constraints, using the two different partitioning
approaches. Both share the same lower cost bound, which is
to allocate all of the work to the GPU platform.

The ILP approach demonstrates a significant improvement
over the heuristic in the median and upper cost bound values.
This difference is explained by the heuristic approach only
considering absolute latency and cost, and not taking into
account the non-linearities in the latency due to the constant
setup time, and in the cost due to the length of time quantum. A
good example of this is the CPU platforms, which the heuristic
approach does not consider at all, but the ILP does, due to the
reduced time quanta both offer.

3) Trade-off Comparison: In Figure 3, we plot the latency-
cost design spaces for the two partitioning approaches. For
each approach we plot the model data latency-cost trade-off

TABLE IV: Latency-Cost Trade-off for Heuristic and Integer
Linear Programming (ILP) Approaches

Cost Level Metric Heuristic ILP Heuristic
ILP

Cheapest (CL) Cost ($) 1.950 1.950 1.0
Latency (S) 8760.420 8760.420 1.0

Median (Ck) Cost ($) 7.445 4.749 1.57
Latency (S) 4468.920 2582.483 1.73

Fastest (CU ) Cost ($) 10.990 7.160 1.53
Latency (S) 4172.144 1979.448 2.11
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TABLE II: Experimental Heterogeneous Computing Platforms. IaaS providers are Microsoft Azure (MA), Google Compute
Engine (GCE) and Amazon Web Services (AWS). Performance was measured using the Kaiserslautern option pricing benchmark.

# Provider Device Programming Standard (Tool) Lookup
Tables

Flipflops BRAMS DSPs
Clockrate
(Ghz)

Application
Performance
(GFLOPS)

Rate
($/hour)

4 - Xilinx Virtex 6 475T OpenSPL (MaxCompiler 2013.2.2) 298k 595k 1064 2016 0.2 111.978 0.438
8 - Altera Stratix V GSD8 OpenSPL (MaxCompiler 2013.2.2) 695k 1050k 2567 3926 0.18 112.949 0.442
1 - Altera Stratix V GSD5 OpenCL (Altera SDK 14.0) 457k 690k 2014 3180 0.25 176.871 0.692
1 AWS Nvidia Grid GK104 OpenCL (Nvidia SDK 6.0) - - - - 0.8 556.085 0.650
1 MA Intel Xeon E5-2660 POSIX (GCC 4.8) - - - - 2.2 4.160 0.480
1 GCE Intel Xeon POSIX (GCC 4.8) - - - - 2.0 6.022 0.352
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Fig. 3: Partitioner performance model predictions vs measured.

versus the actual trade-off realised when we ran the partitions.

Both approaches’ model curves are sufficiently close to
the actual data trade-off that a programmer could use these
approaches to balance their objectives in advance of actual
problem execution. A notable outlier is the upper cost bound
of the heuristic approach, where that seen in reality is 12%
quicker and 7% cheaper than what is projected by the model.
This is consistent with the 10% mean error seen in the latency
prediction models.

V. CONCLUSION

In this paper we addressed the challenge of partition-
ing workloads across heterogeneous IaaS resources so that
lower latencies can be achieved at increased cost. We showed
that predictive runtime characteristic models combined with
a multi-objective optimisation approach provide an effective
methodology for generating Pareto optimal performance-cost
trade-offs. We also evaluated two distinct methods for parti-
tioning, showing that our proposed Mixed ILP approach yields
a more efficient design spaces than a heuristic one.

Furthemore, our work helps makes the case for heteroge-
neous IaaS, demonstrating significant performance improve-
ment and cost saving through heterogeneous architectures
compared to just using conventional CPUs. However, we argue
that these benefits are only realisable if programmers have
a means to balance their objectives efficiently, such as our
approach to workload partitioning.

In the future we would like to increase the scale of these

experiments, both in terms of the number of platforms and
tasks, as well as in terms of range of data points explored.
There is also significant scope for tuning the partitioners
utilised.
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Abstract—Designing hardware is a time-consuming and
complex process. Realization of both, embedded and high-
performance applications can benefit from a design process on a
higher level of abstraction. This helps to reduce development time
and allows to iteratively test and optimize the hardware design
during development, as common in software development. We
present our tool, OCLAcc, which allows the generation of entire
FPGA-based hardware accelerators from OpenCL and discuss
the major novelties of OpenCL 2.0 and how they can be realized
in hardware using OCLAcc.

FPGA, OpenCL, High level synthesis, High performance
computing

I. INTRODUCTION

Focusing on embedded systems typically offers two ways
to realize the core components: (i) writing software for pre-
built devices or (ii) designing custom hardware for the task.
Consequently, this decision is usually made very early during
development. As it is not easy to find an optimal solution
before having designed algorithms and knowing their specific
requirements, Hardware/Software Codesign is delaying this
decision as long as possible. But still, the individual hardware
and software components are developed in mostly disjoint
design flows. The most crucial difference between software
development and hardware design is the way resources are
managed by the developer. While software development as-
sumes a particular hardware to run on and perform best if
memory bandwidth and the CPU utilization are saturated, e.g.,
by exploiting caches or vector instructions; the number of
degrees of freedom is even higher when taking the hardware
design into consideration, where computational resources and
parts of the memory can be tailored to the application’s needs.

With the increasing level of parallelism in current proces-
sors, language extensions have been developed with the goal to
effectively and efficiently distribute work and data on a more
abstract and thus, more device independent level to ease devel-
opment, optimize the solution and increase reusability. These
extensions include vendor-specific languages, e.g., CUDA, but
also the vendor and device independent OpenCL-standard.
Altera was the first FPGA vendor to offer a complete toolchain
to implement applications on FPGAs only using OpenCL [1],
by deriving an application specific data path form the high level
description. Xilinx later also integrated an OpenCL fronted in
Vivado HLS and recently presented SDAccel [2]. Though these
approaches look very comfortable and promising, performance
and efficiency is often limited [3]. In contrast, SOpenCL [4]
uses a fixed data-path on the FPGA, which we think leads to
a less efficient solution because the application’s peculiarities,
e.g., the width of data, cannot be exploited. Like the solutions
of Altera and Xilinx, our approach derives the FPGA design
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Fig. 1: Overview

directly from the algorithm and thus, allows optimal power-
and time-efficiency.

In this paper we present OCLAcc [5], an open source
generator for configurable logic block based accelerators, and
discuss how recent extensions to the OpenCL standard can be
applied to hardware design. First, the basic idea of OpenCL is
presented in Section II. Section III introduces OCLAcc. New
features of OpenCL are discussed in Section IV, followed by
the conclusion.

II. OPENCL
OpenCL is a hardware independent framework to separate

administration of a program and computation. Administration
includes, but is not limited to, coordination of computation,
memory allocation or communication, all done by host-code,
usually executed by a normal CPU. Computation, expressed
as kernel, runs on accelerators like GPUs, but also normal on
CPUs. The main advantage of OpenCL is that programmers
explicitly parallelize their algorithms. However, portable code
does not guarantee portable performance. To fully exploit
a target’s performance, its properties have to be taken into
account, but this is done by methods developers are familiar
with, like loop unrolling or latency hiding. For this reason we
think OpenCL offers a promising way for software developers
to create FPGA-based accelerators.

III. OCLACC

Figure 1 shows the translation process of OCLAcc. The
OpenCL kernel, written in a C-dialect, is translated to Standard
Portable Intermediate Representation SPIR by a modified ver-
sion of Clang, maintained by Khronos. SPIR itself is based on
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LLVM-IR, so we integrated OCLAcc into LLVM. Translation
in OCLAcc happens in two steps. First, SPIR is used to
generate OCLAccHW, an internal representation of the data
flow, optimized to derive hardware from it. This step is based
on basic blocks, which are instruction sequences of maximal
length with a single entry and exit in the control flow of the
kernel. Inputs and outputs are analyzed to identify streams
from and to memory and their static and dynamic indices.
The OpenCL standard requires the compiler to provide built-
in functions, that can be called by a kernel. They include
functions for organization, synchronization and data access,
which are mapped to specific components and control inputs.
This representation is also used for hardware-specific opti-
mization, like common subexpression identification. HWMap,
the second step in OCLAcc depends on the specific hardware
used and thus, exploits vendor-tools. By choosing a supported
device, the hardware description is derived. Depending on the
vendor and the FPGA, OCLAcc either directly instantiates
components, generates IP-cores, or relies on inference by the
vendor-tools. Scheduling of components is tightly coupled
with their generation, because for many parts of the sys-
tem, parameters like latency or maximum clock frequency
are only available when they have been realized. For this
reason, clock-driven synchronization of arithmetic units is only
done inside of basic blocks, while among blocks, a simple
ready/ack-protocol is used.

IV. NOVELTIES IN OPENCL 2.0
OCLAcc is based on SPIR 2.0 and OpenCL 1.2, though it

does not implement the whole standard. This is only necessary
to be certified by Khronos and is currently not intended.
Instead, we work on features of the recent OpenCL 2.0
standard, of which we expect hardware and developers can
benefit from.

Work-group Functions: Until OpenCL 2.0, no built-in func-
tions had been available for data transfer between work-items
of the same work-group, e.g., broadcast, reduction. Instead,
data transfer via local memory and explicit synchronization
had been necessary. In most cases, not all work-items can
be executed simultaneously, so work-group functions imply
synchronization, and can be handled similar to existing func-
tions like barrier(). All work-items have to be processed
until every item has reached the built-in. Depending on the
function, each work-item may provide data used to compute
the result for every item. In hardware, basic blocks write their
data to local storage, realized by SRAM on the FPGA, and wait
for synchronization. When all work-items of the group have
reached that point, the result can be computed and directly
used as input for the following block in each item.

Pipes: Pipes realize packet-based communication channels
without explicitly managed indices, in contrast to directly
allocating a buffer in memory. Created by the host, pipes
are passed to kernels as parameters. Applications with several
kernels that consume and produce data, can benefit from pipes
as they can directly exchange data without manual synchro-
nization. Their FIFO semantic is well known in hardware
design, and their realization using SRAM is obvious, but since
size and dimension of a pipe are defined by the host, either
generic values have to be used by the hardware implementation
or the programmer provides constrains, what we expect to be

possible in most cases. Pipes also provide an easy way to
exchange data with external devices connected to the FPGA
or custom logic on the FPGA, without host interaction, e.g.,
a data stream from an image sensor is pre- and postprocessed
and the results are transmitted to the host via PCIe or directly
to any other component connected to the FPGA. This makes
pipes the most promising extension in OpenCL 2.0, expecially
for embedded architectures.

Device-side enqueue: Another new feature is device-side
enqueue, which allows work-items to launch kernels without
having to return to the host. To realize a dynamically spawned
function, a hardware implementation has to be available.
OCLAcc has to generate them when the main kernels are
translated. The work-queue keeps track of all work groups and
items scheduled and has been managed solely by the host, but
has now to be accessible by the device itself, which is possible
by implementing the queue as FIFO that can also be written
to by the kernel.

Shared virtual memory: Global memory on the device
has to be seen as storage of memory objects instead of
an address space since addresses are not guaranteed to be
preserved across kernel instances or between host and device.
By introducing shared virtual memory (SVM), host and kernels
may exchange pointers to allocated regions. Three kinds of
SVM are introduced, with only the first being required by the
standard. Coarse-grained sharing works on buffers which can
be mapped and unmapped. Pointers to these areas are valid
for host and devices. The two kinds of fine-grained SVM
allow sharing on basis of individual memory access or even
obviate memory handling by OpenCL and allow kernels and
host to use memory allocated by malloc(). These kernels
have the same address space as the host, e.g. when using the
CPU as device. Coarse-grained synchronization is similar to
memory management before OpenCL 2.0, with the difference
that pointers have to be mapped. Finer grained SVM are not
to be implemented by OCLAcc in the near future.

V. CONCLUSION

This paper gives an overview on how OCLAcc derives
hardware descriptions from OpenCL, and discusses new fea-
tures of OpenCL 2.0, which we expect to ease hardware
development or extend the possibilities, without having to
extend the standard with non-portable specialties.
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Abstract －  In recent years, robots are required to be 

autonomous and their robotic software are sophisticated. Robots 

have a problem of insufficient performance, since it cannot equip 

with a high-performance microprocessor due to battery-power 

operation. On the other hand, FPGA devices can accelerate specific 

functions in a robot system without increasing power consumption 

by implementing customized circuits. But it is difficult to introduce 

FPGA devices into a robot due to large development cost of an 

FPGA circuit compared to software. Therefore, in this study, we 

propose an FPGA component technology for an easy integration of 

an FPGA into robots, which is compliant with ROS (Robot 

Operating System). As a case study, we designed ROS-compliant 

FPGA component of image labeling using Xilinx Zynq platform. 

The developed ROS-component FPGA component performs 1.7 

times faster compared to the ordinary ROS software component. 

 Keywords—FPGA; robot; programmable SoC; ROS;     

component-oriented development; 

I.  INTRODUCTION  

In recent years, the design techniques for building robots  

are actively studied. In addition, robots (e.g., for disaster relief, 

unmanned drone, and so on) are required to be autonomous 

and their robotic software are sophisticated. The robots cannot 

equip with high-performance processor since they are 

expected to be in battery operation. On the other hand, FPGA 

(Field Programmable Gate Array) devices contribute to speed 

up in fields such like network packet routing and image 

processing. FPGAs can employ parallel operations for specific 

functions while software always runs sequentially. But a 

development of a system using an FPGA is more difficult than 

that of software since there is a need for implementing them 

with Hardware Description Language (HDL). High-level 

synthesis of hardware is also emerging in recent years to 

implement circuit with C language, however, it is still difficult 

for ordinary software engineers to handle them. 

Robotics depends on various expertise, so they become to 

be hard to develop [1]. Therefore, the development of systems 

using FPGA devices needs to reduce cost for easy integration 

of FPGAs into robots. Component-oriented development is a 

well-known method for reduction of costs in the development 

of robotic software. ROS (Robot Operating System) has been 

proposed as a software platform of component-oriented 

development of robots [2]. ROS provides a framework of 

communication layer and a build system for robotic software. 

In this study, we propose a hardware component using an 

FPGA for easy integration of an FPGA into robots, which can 

be complied and used in ROS system. The ROS-compliant 

FPGA component contributes to performance improvement of 

robots using FPGA devices without lowering productivity of 

robot developers. 

This paper presents a practical design of ROS-compliant 

FPGA component that performs labeling process of images as 

an example. The component is implemented on a 

programmable SoC. In addition, the performance of ROS-

compliant FPGA component was evaluated by comparing with 

software. 

II. “ ROS ” FRAMEWORK FOR ROBOT 

A. ROS Overview 

ROS (Robot Operating System) is released by OSRF 

(Open Source Robotics Foundation) as an open source project 

[2]. It is a software platform which provides a framework of 

communication layer and a build system for robotic software. 

ROS runs mainly on Linux. Motivation of ROS is to support 

for reuse software and to build robotic systems with software 

component in robotic research and the development. Figure 1 

shows the increase of the number of ROS software packages. 

The number of packages increases rapidly since released in 

2007. In addition, Table 1 shows a number of software 

packages and citations for several software platforms for 

robots.  It is clear that ROS is becoming a kind of mainstream. 
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Figure 1 Increase of ROS software packages 
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Table 1 Number of registered packages and citations for 

each software platform for robots 
Platform Name Packages Citations* 

ROS 3699 4610 

RT-middleware [3] 321 1090 

OROCOS [4] Unknown 1540 

*google scholar May 5th, 2015 

B. ROS communication model 

In ROS development, a robot system is designed using a 

set of component called “node” and its communication 

channel called “topic”. A robot developer can make a robot 

system by collecting components from a number of distributed 

package and connecting them. The developer can also make a 

node when a new function is needed. 

The communication model of ROS is based on Publish-

Subscribe messaging (Figure 2). Publish-Subscribe messaging 

is an asynchronous messaging model that ROS Nodes 

communicate over a topic to each other. The biggest 

advantage of Publish-Subscribe messaging is a dynamic 

network configuration since the ROS nodes are bound loosely. 

Therefore, it is able to add a new ROS node easily.  

There are two roles in ROS nodes: publisher and 

subscriber. Topic is a classification of message as well as a 

name of the communication path. A publisher node publishes 

a message to a topic. The topic holds a sequence of messages. 

And any subscriber node in the system, which has subscribed 

to the topic in advance, can receive the message.  

Publisher nodes do not know about subscriber nodes. In 

other words, ROS nodes do not have information of 

communication partner and are bound loosely. Therefore, 

ROS is able to be dynamic network configuration. 

Node Node Node

MsgMsg

Publish Subscribe

Topic

 
Figure 2 Publish - Subscribe messaging 

III. ROS-COMPLIANT FPGA COMPONENT 

This section describes the requirements for ROS-compliant 

FPGA component and its target hardware platform. 

A. Requirements of ROS-compliant FPGA component 

First, we define “ROS-compliant” as follows: An FPGA 

component is ROS-compliant when the component conforms 

to publish/subscribe messaging rule so that it can 

communicate with any other ROS nodes. There are two 

requirements for ROS-compliant FPGA component. 

 The functionality of the ROS-compliant FPGA 

component is equivalent to that implemented in software. 

 The message type and data format used at the input and 

output of the ROS-compliant FPGA component is 

equivalent to that implemented in software 

An integration of an FPGA into a robotic system needs 

equivalent functionality to replace a software ROS component 

with a ROS-compliant FPGA component. Therefore, each 

ROS message type and data format used in ROS-compliant 

FPGA component must be same as the software ROS 

component. ROS-compliant FPGA component aims to 

improve its processing performance while satisfying their 

requirements. 

B. Structure of ROS-compliant FPGA component 

Figure 3 shows the structure of the proposed ROS-

compliant FPGA component model. Based on the 

requirements in the previous section, the component must 

implement following four functions: 

 The encapsulation of FPGA circuits, 

 Interface between ROS software and FPGA circuits, 

 Subscribe interface from a topic, and 

 Publish interface to a topic. 

The FPGA part performs any accelerated processing. 

There are two roles of software in the component. First, an 

interface process for input subscribes to a topic to receive 

input data. It is responsible to format the data suitable for the 

FPGA processing and sends the formatted data to the FPGA. 

Second, an interface process for output receives processing 

results from the FPGA. It is responsible to format the data 

suitable for ROS system again, and publishes them to a topic. 

If other nodes need the data on the topic, the nodes should 

have subscribed to the topic. Such a structure realizes to make 

a robot system in which software and hardware cooperate. 
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Figure 3 ROS-compliant FPGA component model 

C. Implementation on a Programmable SoC 

The difference of ROS-compliant FPGA component from 

a ROS node written in pure software is that processing 

contains hardware processing of an FPGA or not. Integration 

of ROS-compliant FPGA component into a ROS system only 

needs to connect to ROS nodes by Publish/Subscribe 

messaging in ordinary ROS development style. ROS-

compliant FPGA component provides easy integration of an 

FPGA by wrapping it with software.  

We have selected “Programmable SoC” as a target 

hardware platform for low-power robots. Figure 4 shows 

assignment of processing on a programmable SoC. SoC 

(System on Chip) is an LSI that integrates all of the necessary 

functions to build a system in a single chip. Generally, a 

hardwired processing logic on an FPGA can achieve better 

performance at low power consumption compared to software 

running on a general purpose processor. T. Suzuki et al. 

exhibited power saving and performance improvement of 

processing of robotic application using an FPGA [5]. In this 

study, we use ARM processor and FPGA in programmable 

SoC. Linux OS and ROS nodes run on the ARM processor, 

and processing for robot runs on FPGA. Processing which is 
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suitable for software is assigned to software on ARM, and 

processing which is suitable for hardware is assigned to 

hardware. The aim of choosing “Programmable SoC” as a 

target platform is to improve performance by minimizing 

burden of hardware development while keeping productivity. 

IV. CASE STUDY : LABELING COMPONENT 

This section describes implementation of image labeling 

based on ROS-compliant FPGA component model. 

A. Labeling overvew 

Processing of image labeling that it puts label number each 

group of white pixels in binary image. Labeling is used to 

measure area, angle and length of target in many robotic 

systems. Figure 5 shows an example of labeling result. To 

produce a correct result, the labeling need two steps, because 

raster-scan may label one region as a split several regions. The 

second step may fix the problem easily. Anyway, this paper 

describes the first step of labeling, which tends to be time 

consuming task for software. 

B. Hardware implementation overview 

Figure 7 shows the block diagram of the hardware. 

Processing target is full HD image (1920×1080 pixels, about 

2M bytes). In this case, labeling operation is applied per line 

basis, since BRAM of an FPGA is too small to store the entire 

HD image. In order to exploit maximum efficiency of 

hardware processing on an FPGA, we designed labeling 

hardware to be able to label a pixel in a clock. 

Communication
ARM processor
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Figure 4 Assignment of tasks on a programmable SoC 
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Figure 5 Labeling example 

1) Communication between FPGA and ARM processor 

In this study, Xillinux [6] is used to communicate between 

FPGA logic and ARM processor. Xillinux is a platform for 

Zynq that is released by Xillybus Ltd. Linux (Ubuntu) OS runs 

on the ARM processor. Xillinux can access to FPGA logic 

through a specific device file.  

Figure 6 shows the communication mechanism of the 

labelling hardware and the ARM processor. Software can 

access to FIFOs through device file and read/write data 

from/to it. The FPGA reads/writes data from/to FIFO by 

control of read/write enable port at any time. 
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Figure 6 Communication mechanism  

2) The role of each module 

Table 2 shows the roles of each module in hardware. There 

are five modules. First, the labeling hardware stores a line of 

input image to memory_img. Immediately after that, 

input_controller inputs pixel data to label_generator and 

label_generator executes the labeling pixel by pixel. Labeling 

algorithm needs a pixel data and label numbers of the previous 

line and previous pixel, so two memories label_data0 and 

label_data1 are prepared. In other words, label_generator 

writes result of current line to label_data1 while reading from 

label_data0. In the next line, label_generator read from 

label_data1 and write to label_data0.  

Detail of “label_generator” is explained in the next section.  

Table 2 Function of each module 

Module Function 

memory_img Save a line of input image 

label_generator Labeling a pixels 

label_data0 Save a line of result (label number) 

label_data1 Save a line of result (label number) 

FIFO buffer Buffer for input and output 
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Figure 7 Overall view of hardware
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3) Detail of labeling curcuit (label_generator) 

We have designed labeling hardware to be able to label a 

pixel in a clock.  Figure 8 shows a circuit diagram of 

label_generator. There are four 8-bit inputs. One input named 

“New Pixel” is for pixel data of input image, other inputs are 

for previous label numbers. In addition, single output named 

“Output Label” is 8-bit for labeled number. 

Whenever “New Pixel” is black (“0”), the output is “0”. 

When it is white, if “Reference Labels” are all “0”, the circuit 

outputs an incremented value of previous label number, which 

is stored in the “Current Label” register. On the other hand, if 

there are any non-zero number in “Reference Labels”, 

minimum number of them is output as a result. 
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Figure 8 Detailed block diagram of label_generator 

C. ROS node implementation overview 

Figure 9 shows overall view of ROS system which 

includes ROS-compliant FPGA component. There are four 

ROS nodes in the system. 

 input_image: input an image to data_input (topic) 

 write2fpga: receive data from subscribed data_input and 

send it to an FPGA 

 read4fpga: receive data from an FPGA and publish it to 

data_output (topic) 

 display_result: receive data form subscribed data_output 

and display it on a console. 

Input_image reads input image from a bitmap file and 

publishes it to topic data_input. In write2fpga, message 

received from the subscribed topic data_input is sent to FPGA 

as image data. Write2fpga for providing data to the FPGA 

accesses FIFO through device file and writes data. After 

labeling on the FPGA, read4fpga reads data from the FPGA, 

similarly. Then the label number data read from the FPGA are 

published to data_output as message. If other node needs 

labeling results, any node in the system can subscribe to the 

topic and receive the result from it. 

The format of ROS message can be defined at message 

file like Figure 10 by a developer. A developer can use pre-

defined message prepared by ROS, too. In this study, we have 

defined four fields in the message used in the system. 

 frame_ID: frame number (32bit integer) 

 width : width of image (16bit integer) 

 height : height of image (16bit integer) 

 pixels : for pixels data of image (32bit integer array) 

data_input
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Figure 9 Overall view of ROS system with  

ROS Compliant FPGA Component 
 

 
Figure 10 Message file used to define message format 

V. PERFORMANCE EVALUATION 

This section describes performance evaluation of ROS-

compliant FPGA component. The evaluation was conducted in 

three different conditions. 

(1) ROS-compliant FPGA component (ARM + FPGA) 

(2) Software only (SW only : ARM) 

(3) PC (SW only : PC) 

The environment used for (1) and (2) was ZC7Z020 

(Xilinx Ltd) on Zedboard. ZC7Z020 is a programmable SoC 

equipped with ARM Cortex-A9 processor (666MHz) and 

Artix-7 FPGA on a chip. OS is Ubuntu 12.04 LTS (Xillinux-

1.2-eval). In addition, the operating frequency of labeling 

hardware was set to 100 MHz in (1). The environment of (3) is 

ordinary PC equipped with Intel Core i7 870 (2.93GHz). OS is 

Ubuntu 12.10. In addition, Table 3 shows hardware resource 

utilization of the FPGA. 

Figure 11 shows the average of measured processing 

time in labeling. Resolution of input image is 1920x1080, and 

the measurement was done using gettimeofday() standard C 

library function in the software and repeated 10 times. In the 

environment of (1), the average was 32 ms per frame 

(including communication time between the ARM processor 

and FPGA), the min/max were 28 ms / 35 ms, respectively. 

The processing time of ROS-compliant FPGA component was 

26 times faster than that of software with the ARM processor, 

and the ROS-compliant FPGA component performs even 2.3 

times faster than that of PC.  

Ideally, the number of clocks is 1,920 clocks for the 

processing per line. In the current implementation, the period 

is 2,400 clocks because 5 clocks is elapsed to process 4 pixels. 

Table 3 Hardware resource utilization (Zynq-7020) 
 

RESOURCE UTILIZATION 

Slice Registers 4,123/106,400 (3%) 

Slice LUTs 4,114/53,200 (7%) 

RAM B36E1 3/140 (2%) 

RAM B18E1 11/280 (3%) 

int32 frame_ID 

int16 width 

int16 height 

int32[ ] pixels 
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Therefore, processing per frame requires 2.6M clocks for 

1,080 lines, and the processing time per frame in the FPGA is 

26ms (the clock period is 10 ns). This means overhead of the 

processing time (32 ms) in the experimental system is 6 ms. 

This is due to communication time between the ARM 

processor and the FPGA. The ROS-compliant FPGA 

component performs faster than processing with only software 

even with care of the communication delay between the 

software on ARM processor and the FPGA. 

Figure 12 shows the total latency from the data input to 

the data output in ROS-compliant FPGA component and the 

ROS component with pure software. This latency corresponds 

to the performance in real situation of robot system. Legends 

of represents is as follows. 

1: Communication of ROS nodes (Publish/Subscribe) 

2: From after subscribe to before labeling 

3: Labeling 

4: From after labeling to before publish 

5: ROS node’s communication 
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Figure 11 Measured processing time of labeling  

In the environment (1), the total latency was 1.99 sec. 

This is about 1.7 times shorter than that of pure software with 

the ARM processor. In (1) and (2), communication of ROS 

nodes occupies a lot of the total latency. In addition, the 

latency of (3) is much shorter than (1) and (2). Constituent 

ratio of labeling is about the same in (2) and (3). The time of 

communication and computation is proportional to processor 

performance. In (1), the time of computation is reduced 

drastically, so the time of communication is relatively longer. 

Operating frequency of ARM processor is 666 MHz in (1) and 

(2), on the other hand, Intel Core i7 870 is 2.93GHz. 

Regarding power consumption, the supply power of 

labeling hardware on the ROS-compliant FPGA component 

was estimated with XPower Analyzer by Xilinx that is 

attached to ISE Design Suite. The total power estimated for 

our ROS-compliant FPGA component is 0.33W, the dynamic 

power is 0.20W, and the static power is 0.13W. Generally, 

power consumption of high performance processor is about 

100W (for example, Intel Core i7 and so on). The power 

consumption of the proposed ROS-compliant FPGA 

component is much lower than that of the high-performance 

processors. Table 4 shows the power consumption of several 

wheel-based vehicle robots by battery operation. They ranges 

from 22W to 400W. The estimated power of the labeling 

component is much lower compared to them. Therefore, ROS-

compliant FPGA component can contribute to the 

performance improvement of robots while keeping low power.  

 

Table 4 Power consumption of robots 

ROBOT BATTELY POWER 

Kobuki [7] 22W 

iRobot Roomba  [8] 30W 

Husky A200 [9] 400W 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

FPGA+ARM

SW only (ARM)

SW only (PC)

time (s)
1 : Communication of ROS nodes (Publish/Subscribe)

2 : From after subscribe to before labeling

3 : Processing of labeling

4 : From after labeling to before publish

5 : Communication of ROS nodes
 

Figure 12 Total latency of the ROS compliant FPGA component 
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VI. RELATED WORKS 

There are not few papers which report the application of 

an FPGA onto a robot. This section describes some examples 

which FPGA is used for robots.  

As a digital logic interacting with real-world interface, 

FPGA is used for robot manipulator with advanced control 

logic.  This is because most of nonlinear controllers need real 

time mobility operation which is hardly realized by general 

purpose microprocessors [12] [13]. 

In previous research [14], autonomous fuzzy behavior 

control, and sensor-based behaviors are implemented on an 

FPGA for robot car. These are needed for the human-like 

driving skills by an autonomous car-like mobile robot.  

Another view point of the application of an FPGA onto 

robotic systems is the design environment of control systems 

using an FPGA. The development of a system using an FPGA 

is more difficult than that of software since there is a need for 

implementing them with Hardware Description Language 

(HDL). It is still difficult for ordinary software engineers to 

handle them, so how to reduce the development cost of a 

system using FPGA is very important. In previous research 

[16], it is mentioned that the development of a system on an 

FPGA using traditional programming language: C, C++ and 

MATLAB improve productivity for robotic developer. 

Recently, our research group developed an inverted pendulum 

system using the high level synthesis tool which generates 

HDL code from pure Java code. The computation time of the 

control logic of the system is greatly reduced by using FPGA 

designed with the Java code, without writing any HDL code 

[17]. 

FPGA is very effective for robots to reduce computation 

but connection between software and FPGA is not easy. This 

paper proposed ROS-compliant FPGA component as a 

technology which build easy a bridge between software and 

FPGA. Robotic developer can choose any language to 

implement robotic software and hardware by ROS-compliant 

FPGA componentizing processing for robots. Once 

implementing with the ROS-compliant FPGA component, it 

can achieve performance improvement of robotic system. 

VII. CONCLUSION 

This paper describes ROS-compliant FPGA 

componentizing of image processing hardware on a 

programmable SoC. The proposed ROS-compliant FPGA 

component technology using FPGA devices is aimed to 

contributes to the easy integration of FPGA into robots.  

As a case study, the proposed component with hardwired 

image labeling on an FPGA is implemented on programmable 

SoC equipped with the ARM processor and FPGA logic. The 

ROS-compliant FPGA component on Xilinx Zynq-7020 

performs 26 times faster than that of software with the ARM 

processor, and even 2.3 times faster than that of PC. Moreover, 

the total latency of the component was 1.7 times faster than 

that of processing with pure software. Therefore, the ROS-

compliant FPGA component achieves remarkable 

performance improvement, maintaining high development 

productivity by cooperative processing of hardware and 

software.  

Communication of ROS nodes occupies a lot of 

execution time in ROS-compliant FPGA component. From 

now on, another study is necessary for the reduction of ROS 

node’s communication latency. 
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Abstract—When designing modern embedded computing sys-
tems, most software programmers choose to use multicore pro-
cessors, possibly in combination with general-purpose graphics
processing units (GPGPUs) and/or hardware accelerators. They
also often use an embedded Linux O/S and run multi-application
workloads that may even be multi-threaded. Modern FPGAs
are large enough to combine multicore hard/soft processors
with multiple hardware accelerators as custom compute units,
enabling entire embedded compute systems to be implemented
on a single FPGA. Furthermore, the large FPGA vendors
also support embedded Linux kernels for both their soft and
embedded processors. When combined with high-level synthesis
to generate hardware accelerators using a C-to-gates flows, the
necessary primitives for a framework that can enable software
designers to use FPGAs as their custom compute platform now
exist. However, in order to ensure that computing resources
are integrated and shared effectively, software developers need
to be able to monitor and debug the runtime performance
of the applications in their workload. This paper describes
ABACUS, a performance-monitoring framework that can be used
to debug the execution behaviours and interactions of multi-
application workloads on multicore systems. We also discuss how
this framework is extensible for use with hardware accelerators
in heterogeneous systems.

I. INTRODUCTION

The complexity of embedded systems has increased dra-
matically in the past ten years. Software programmers now
commonly design for embedded platforms with multicore
processors running operating systems for multi-application
workloads that are sometimes even multi-threaded. Recent
developments in commercial Field Programmable Gate Array
(FPGA) Computer Aided Design (CAD) flows and device
architecture suggest that we are approaching the juncture
where these software programmers may be able to shift to
using FPGAs to implement these types of embedded systems
and benefit from the inclusion of hardware accelerators.

Modern Field Programmable Gate Arrays (FPGAs) are
large enough to implement hard and soft multicore architec-
tures [1]–[3] in conjunction with custom hardware accelerators.
FPGA vendors now also support High-Level Synthesis (HLS),
which allows programs written in software languages (e.g.
C) to be to be synthesized into actual hardware on a de-
vice. Furthermore, vendors provide Graphical User Interfaces
(GUIs) that enable software programmers to describe their

Fig. 1. Typical Multi-Core System Architecture

basic platform architecture and the inclusion of HLS-generated
hardware accelerators; they also support embedded Linux
kernels for both their hard and soft processors. As such, many
of the necessary building blocks for software programmers
to use FPGAs to build heterogeneous multicore computing
systems already exist.

However, these building blocks unto themselves are insuf-
ficient for software programmers to use FPGAs to implement
compute platforms at the level of abstraction with which
they are comfortable. To enable a seamless transfer from
more traditional multicore compute systems to heterogeneous
multicore compute systems, software programmers require a
complete design and development ecosystem that provides
them with the virtualization and visualization to which they
have become accustomed.

In this paper, we concentrate on a software developers need
for visualization of an applications behaviour. Programmers
need to be able to debug an application’s functional behaviour
as well as ascertain if (and potentially why) their current
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solution fails to meet necessary performance requirements.
There is significant research ongoing as to how to provide
software programmers the necessary functional debug support
to develop software that executes as complete custom hardware
or as a processor plus one or more hardware accelerators [4]–
[8]. The remainder of this paper focuses on performance debug
and runtime monitoring.

In a previous paper, we briefly presented a hArdware-Based
Analyzer for Characterizing User Software (ABACUS) [9].
It focused on the need for a configurable microarchitectural
independent hardware unit that could be used for workload
investigation on a single processor core and processor archi-
tecture research on FPGAs [9]. This paper describes how the
latest work on the ABACUS framework makes it a key visual-
ization component for software programmers to use FPGAs for
computing. We explain how ABACUS can be used to provide
runtime performance information allowing a programmer to
understand why a workload’s execution is behaving as it is
and what may be the source of its failure to meet performance
requirements. We discuss its updated architecture and interface
to both the user and OS. We also outline how this framework is
not only for single core processors, but also is easily extensible
to multicore systems, heterogeneous systems, and functional
debug.

The remainder of this paper is organized as follows. Sec-
tion II motivates why this type of framework is important for
software programmers, particularly in heterogeneous systems
and then highlights the requirements for such a framework to
be accessible to software developers. Section III talks about the
challenges and opportunities for performance visualization for
software programmers using FPGAs as computing platforms.
Related work is summarized in Section IV. We discuss our
ABACUS framework in Section V, describing the architecture
and system software as well as examples of different types
of monitoring units. In Section VI, we outline how ABACUS
is designed to be extensible to multicore and heterogeneous
systems and can be used for functional debug. Section VII
concludes the paper and recommends potential future work.

II. SOFTWARE PROGRAMMER REQUIREMENTS FOR
PERFORMANCE DEBUG

When systems have multi-application workloads, the desire
to share a single, coherent memory architecture often results in
side effects. An obvious example for a single processor core
system is the time needed for context switches to clear the
state from the previously executing application and restore the
state of the next application to execute. However, consider the
case of a coherent multicore system, as shown in Figure 1.
In this case, since applications on different processors may
need to access memory at any given time – sometimes at the
same time – these side effects may become more pronounced,
while at the same time less predictable. These delays could
negatively impact execution time it may not be able to fetch,
process and store/display data in a timely fashion. As such,
while the software may be functionally correct (i.e. performing
the correct operations), it will not return meaningful results and
fail to perform as required.

These types of problems often only arise after a period
of execution as they result from software interactions from

the various tasks executing on the system. This makes them
much easier to detect and understand on the actual execu-
tion platform as opposed to in a simulator. However, for
this to occur, software programmers must be provided the
necessary infrastructure to monitor their system at runtime
on the actual platform. First, the ideal infrastructure for this
type of monitoring does not require any annotations of the
actual software executable. This is because this annotation
results in additional execution overhead, resulting in additional
side effects. In some cases, this may exacerbate the existing
problems. However, in other cases, it may cause new problems
that do not exist in the actual system at runtime – or worse,
the act of observing the system may artificially ”correct” the
performance bug, making it now undetectable. This is akin to
someone having a bug in their program and then compiling
it with the debug flags enabled, which somehow corrects the
bug, making it extremely hard to find.

Ideally, this type of performance infrastructure will also
have minimal impacts on the memory hierarchy when data is
being stored for offline analysis. Depending on the nature and
volume of data being stored about an application, it may need
to be stored off-chip in the system’s main memory. Obviously,
this may also result in side effects in program execution as
it may potentially introduce new contention to the system’s
memory arbitration.

For this type of performance monitoring and debug infras-
tructure to be usable to software developers on an FPGA, they
must be able to configure and obtain the data via software
through the on-chip OS while the FPGA is still configured with
their hardware system. Ideally, the system monitoring units
should be able to be reconfigured and restarted without having
to re-tune the hardware or re-download the hardware system
design. Instead, assuming the monitoring units are included as
part of the actual system design, programmers can simply alter
and update their software, scheduling assignments, etc. to alter
system performance – without having to incur costly hardware
redesign/re-synthesis time unless absolutely needed.

Additionally, the data obtained at runtime should be sorted
and stored per process, if not per thread, so that the de-
veloper can track which specific applications (threads) are
being penalized by the current resource/scheduling allocation
so that this can be corrected more quickly. This type of data
becomes even more crucial in heterogeneous systems where
software designers may have a hardware accelerator that can
be shared amongst a family of applications (e.g. a Discrete
Cosine Transform for image processing applications). If both
a software and hardware version of the accelerator exist, only
a subset of the applications may actually require use of the
hardware version to meet timing requirements.

III. CHALLENGES AND OPPORTUNITIES FOR
PERFORMANCE VISUALIZATION ON FPGAS

Software programmers choosing to implement their designs
on FPGA-based processor systems face some unique chal-
lenges; however, they are also provided with some unique
opportunities. High-performance processors have long sup-
ported hardware counters for performance monitoring, and
provide well-developed APIs to use these counters. Soft FPGA
processors do not include hardware counters, however, the

69



latest generation of FPGAs include embedded hard processors
that do have hardware counters [1]. Unfortunately, hardware
counters are often limited in number (<< 100), bit-width, and
functionality, and can only be accessed when the processor is
not executing application software.

In an FPGA-based system, however, it is possible to
build an independent performance monitoring framework using
some of the reconfigurable logic. This provides the opportunity
for microarchitectural-independent data. Depending on the
nature of the soft or hard processor being monitored, the
user may be limited as to what signals can be monitored, but
snooping a combination of the debug, interrupt, and memory
access signals will provide software designers with much of
the same information to which they have become accustomed.

In fact, by using the FPGA reconfigurable logic to build
monitoring infrastructure, it is completely possible to build
new performance monitoring units that are not specifically
available. Using this approach, software designers can monitor
considerably more complex behaviours than simple counters.
Entire Block RAMs (BRAMs) can be allocated to store
information such as: histograms of memory access patterns,
complete data traces of parts of the programs, stall times and
memory latencies, etc. Finally, in an FPGA-based system, the
performance monitoring framework need not be integrated into
the processor architecture. This allows it to altered/read before,
during, or after program execution and it does not require
any annotation of the software being monitored, reducing the
chance for execution side effects.

IV. RELATED WORK

At the accelerator level, there has been some work for
visualizing and debugging HLS-generated accelerators. If soft-
ware designers write their system description in C and then
use HLS to generate the circuit, then waveform debugging
is not as useful. Instead, a GNU-style debugger enables the
programmers to visualize their solution in terms of variables
and functions they had originally written as opposed to signals
and circuits (and waveforms) created by the CAD flow [4]–
[8]. Commercial vendors have also recognized the value of
supporting on chip debugging of circuits [10], [11] and HLS
designs [12].

Performance Monitoring for multicore systems is an active
area of research [13]–[16]. Commercial vendors of multicore
systems, such as AMD and Intel, also support profiling frame-
works that use the hardware counters embedded in their Sys-
tem architecture [17], [18]. Additionally, previous researchers
have also realized the value of using the FPGAs reconfigurable
fabric to create additional instrumentation and monitoring
circuitry to profile the system in operation, although this has
generally been aimed at single core processors [9], [15], [19].

Xilinx has combined these two concepts to provide their
SDSoC environment, which uses the embedded hardware
counters in the ARM processor in conjunction with perfor-
mance monitors instantiated in the reconfigurable fabric for
monitoring performance on the bus [20]. This is the closest
work to our ABACUS framework. However, unlike SDSoC,
our performance monitoring framework does not require soft-
ware to collect its data. Instead, it acts as a completely inde-
pendent unit, with DMA support, able to write its data back

Fig. 2. ABACUS Architecture

to main memory, to reduce its impact on the actual system. It
can also be used to generate interrupts to halt the CPU when
specific situations are detected. Unlike SDSoC, ABACUS also
has the necessary software to be used in conjunction with the
system executing on the FPGA, communicating as needed with
its OS. By reserving an OS page in the FPGA-based platform,
when the data is uploaded to the OS page from ABACUS,
the programmer or the OS can use and aggregate the data to
make appropriate design and/or scheduling decisions. A final
important feature to our system that is different than SDSoC
is its extensibility. It is designed to enable users to create
and/or select performance monitoring units from a library of
units so that the performance monitoring infrastructure is best
suited to the current application set of a particular workload.
This extensibility is key to enabling it to support performance
monitoring of heterogeneous systems.

V. OUR ABACUS FRAMEWORK

Figure 2 illustrates the basic architecture of our improved
ABACUS performance-monitoring unit. Similar to the original
design in [9], we still maintain three basic system modules:
External Interfaces, Control Logic, and the Performance mon-
itoring units. The current design, however, supports a more
complex external interface and more complex Performance
Monitoring Units. In the original design, ABACUS was con-
nected to the System Bus and snooped the desired signals
from a CPU. Our new version is capable of snooping signals
from multiple CPUs and associating the recorded data with a
specific process or thread. It also supports DMA and has a
corresponding device driver that can be included in the OS
kernel. This enables the OS and the user to communicate
directly to the device. ABACUS is assigned a specific address
range on the system bus and is memory mapped by the OS.
This enables status and configuration registers to be read or
written through pointer referencing/dereferencing, to enable
configuration settings such as reset, enable, and disable for
specified processes or physical address ranges. The ABACUS
device driver allows access through the ioctl function for
reading/writing single registers as well as via mmap to access
the full address space of ABACUS. The drivers enable the
allocation of a page of kernel memory, enabling ABACUS to
use DMA to copy its collected data into software space while
the system is running.

The control level now supports the ability to record parallel
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data for a specific measurement being run on a multithreaded
program executing on multiple processor cores concurrently.
It also enables the user to time stamp when specific data
was recorded (e.g. memory accesses in a data memory trace).
It allows users to trigger ABACUS performance monitoring
to start and stop based on various conditions, including the
specific number of clock cycles or after a specific memory
address access. For example, ABACUS can be triggered to
collect user-specified data every time a specific instruction,
function, or application executes. It is also able to send an
interrupt to the OS to indicate that a specific situation has
been detected based on user/OS configuration.

This latest design of ABACUS also includes more complex
profiling units to demonstrate the true power and potential
of an independent performance monitoring infrastructure not
reliant on only hardware counters. For example, we have
created a data memory access histogram unit to identify which
regions of memory are accessed most frequently. When used
in conjunction with our data memory access memory trace
unit, this enables programmers to see which data regions are
most frequently accessed and in which patterns, potentially
facilitating a reorganization of data that reduces cache misses.
We have created a memory latency unit to store a histogram
of how many cycles it takes for each memory access to be
completed. Another complimentary performance monitoring
unit is our stall unit that measures the number of clock
cycles a processor is stalled, waiting for the completion of
an instructions.

This is just a subset of the potential units that can be
designed and included as part of ABACUS. However, the key
point is that it is easy for the user to select which of these units
they wish to instantiate as part of their platform and configure
the different parameters associated with each unit. It is also
easy for the user to include new units as they are developed.
It is possible to boot ABACUS with a set configuration, to
start running once the system is powered up. However, the
programmer or the OS is free to reconfigure ABACUS at
runtime as desired, without having to reboot or re-download
the system. Each of the individual performance monitoring
units can then be configured independently and activated for
any desired subset of the processor cores in the system.

VI. EXTENDING THE ABACUS FRAMEWORK

We are currently extending the ABACUS framework in at
least two directions:

Multicore Scheduling: Figure 3 illustrates how ABACUS
has been integrated into our multicore PolyBlaze system [3].
Note that the CPU Debug Signals illustrated in Figure 2 can
be used to monitor any signal in the processing system, even
those internal to the processor, and their actual connections
to the processor are dictated by the types of monitoring units
that the user chooses to instantiate. As such, these connections
have been excluded Figure 3, with the understanding that
ABACUS can connect to any signal in a system that is deemed
appropriate by the designer.

By including some of the processing units described in
the previous section, we have been able to analyze multi-
threaded workload execution across the processor cores by
aggregating the results of an application’s thread execution

Fig. 3. Integration of ABACUS with PolyBlaze

across the various processors. The key extension we have not
yet completed for homogeneous multicore systems is how to
use this data to guide the OS scheduler to potentially improve
the platforms execution and power efficiency. Although the
ABACUS performance monitoring data is currently accessible
by the OS, it is not being used to influence scheduling
decisions.

Heterogeneous Multicore Systems: The ABACUS hard-
ware framework and software infrastructure are already suit-
able for incorporation in a heterogeneous multicore system, as
shown in Figure 4. The two components currently missing are
specific performance monitoring units designed for hardware
accelerators and the ability to provide ABACUS’ runtime data
to the OS to improve the sharing of hardware accelerators.
Our current plan is to feed this data into the scheduler in
FUSE (shown in Figure 3 in the dashed box), our Front-
end USEr API (FUSE) for abstracting hardware accelerators
in multicore systems [21]. The API could then use the data
to share the hardware accelerators more efficiently and better
meet the systems hardware performance requirements.

VII. CONCLUSIONS AND FUTURE WORK

Much of the current research towards making FPGAs
accessible platforms for software programmers focuses on
HLS and bare metal programming (i.e. no OS) on single
processor core systems combined with hardware accelerators.
We believe that given the current prevalence of embedded
multicore compute systems and the use of operating systems,
it is important to consider this next step of development.
As FPGA devices increase in size and complexity, with
embedded multicore processors supporting operating systems,
they become an obvious next generation technology choice
for embedded computing systems to facilitate heterogeneity.
Providing software programmers with the necessary hardware
infrastructure to design these types of compute systems is
insufficient to persuade them to adopt these platforms. Instead,
we must provide them with the complete design ecosystem to
which they have become accustomed, including OS support,
debugging and performance monitoring. This paper focused on
discussing the needs and opportunities for software designers
to create multicore heterogeneous systems. We highlighted
how software programmers could use our ABACUS framework
in symmetric multicore and heterogeneous multicore systems
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Fig. 4. Integration of ABACUS in a Heterogeneous System

to better understand the execution behaviour of their workloads
to make better scheduling and design decisions.

In the future, we will be designing experiments to test
ABACUS in heterogeneous compute environments. This will
include integrating ABACUS support with a heterogeneous
multicore platform virtualization API, such as FUSE [21] and
then assessing what different types of performance monitoring
units might be most appropriate. Based on this assessment, we
hope to generate a basic framework for the key performance
monitoring units so that they can be automatically included.
The objective is to minimize the number of performance
monitoring units software designers would need to generate
for their individual systems to further facilitate their design
process on a heterogeneous multicore compute platform.
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I. INTRODUCTION

To further enhance the capacity of parallel processing, the
Network-on-Chip (NoC) is gradually adopted in a System-
on-Chip (SoC) design, instead of the conventional bus archi-
tecture. Further, due to the support of partial reconfiguration
technology, the Partial Reconfigurable Regions (PRRs) in an
FPGA device can be configured as an IP core, such as a
General-Purpose Processor (GPP) or a hardware accelerator.
As a result, the Processing Elements (PEs) can be dynami-
cally reconfigured on-demand in an NoC-based reconfigurable
systems [1]. However, although the partial reconfiguration
technology enhances system flexibility so as to meet different
application requirements, the resource utilization of hardware
logic is still restricted, owing to the limitation of NoC-based
infrastructure. This means that, when a software application
task is mapped to a PE, this PE is thus blocked and cannot be
used by other application tasks, until the previous application
finishes. In fact, the PE used is not accessed by the application
all the time, which leads to a waste of computing resources.

To solve the above issue, we propose a virtualization
architecture for NoC-based reconfigurable systems. The mo-
tivation of this work is to develop a service-oriented archi-
tecture that includes Partial Reconfigurable Region as a Ser-
vice (PRRaaS) and Processing Element as a Service (PEaaS)
for software applications. According to the requirements of
software applications, new PEs can be created on-demand by
(re)configuring the logic resource of the PRRs in the FPGA,
while the configured PEs can also be virtualized to support
multiple application tasks at the same time. As a result, such
a two-level virtualization mechanism, including the gate-level
virtualization and the PE-level virtualization, enables an SoC to
be dynamically adapted to changing application requirements.
Therefore, more software applications can be performed, and
system performance can be further enhanced.

II. VIRTUALIZATION ARCHITECTURE DESIGN

The proposed design is based on a 2D-mesh architec-
ture [2], as shown in Fig. 1. Different from the virtual channel
design [3] that focuses on reducing congestion on an NoC,
this work further introduces the concept of virtualization. In
our current implementation, each PE can be virtualized as two
virtual PEs to support two application tasks at the same time.

Besides adopting the partial reconfiguration flow to realize
the PRRaaS, a new NI design and a new router design are
proposed to realize the PEaaS, as shown in Fig. 2. To enable
two different application tasks to access the same PE, in a

Physical Layer Gate-level Virtualization PE-level Virtualization
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Fig. 1. Virtualization Architecture
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router, two local ports are implemented to individually connect
to the two DataReceive components (DR0 and DR1) in the
NI for supporting the PE-level virtualization. The DataReceive
component is responsible for receiving the flits from a router,
and all the received flits are then reconstructed to be a complete
packet. When the reconstruction process of the packet finishes,
the DataReceive component thus invokes the corresponding
signal AvReceive (asserted high). Finally, the packet is
transferred to the PE through the buffer controller using the
signal Data_in_0 or Data_in_1.

To support the PE-level virtualization, each router also
includes a virtualization controller that contains two specific
signals, namely task_0_status and task_1_status to
control the virtualization mechanism. Initially, the router would
act as a conventional one that performs only an application
task, in which one of the two local port is disabled. When a
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new application task needs to execute on the same PE, PE-level
virtualization is then invoked. The unused local port is enabled
to receive the packet flits from another application task. As a
result, the flits received from two different application tasks
can be individually and simultaneously transferred to the two
DataReceive components. When the signal AvReceive_0 or
the signal AvReceive_1 is asserted high, the corresponding
signal (Data_in_0 or Data_in_1) is thus used to transfer a
complete packet to the PE. Here, based on the first-come-first-
served scheduling policy, two different application tasks can
be executed on the PE in an interleaving way. As a result, from
the viewpoints of software applications, the PE is virtualized
as two PEs.

To support the virtualization architecture, an adaptation
management mechanism, as illustrated in Fig. 3 is also pro-
posed to receive application requests. This mechanism is
realized as a software program executed on a specific PE
called global manager. By interfacing with the virtualization
architecture, the PRRaaS and PEaaS can be performed for
software applications.

III. EXPERIMENTS

We implemented the virtualization design as a 3× 3 mesh
NoC architecture on the Xilinx Virtex 6 FPGA. To evaluate the

(a) GCD and RSA are individually virtualized (b) Both GCD and RSA are virtualized at the same time

Fig. 4. System Performance Analysis

proposed design, a conventional Hermes NoC design [2] was
also implemented for comparison. Two PEs, including a RSA
function and a Greatest Common Divisor (GCD) function,
were used to execute multiple application tasks. Compared
to the Hermes NoC, supporting PE virtualization needs an
extra 1% of slice registers and an extra 2% of slice LUTs.
The resource overheads in terms of additional reconfigurable
resources are small and acceptable.

To evaluate performance improvement, different numbers
of application tasks were applied to both the Hermes NoC
and the proposed design (VNoC). The GCD function, the
RSA function, and both the GCD and RSA functions were
virtualized to support different numbers of application tasks,
as shown in Figures 4(a) and 4(b), respectively. We can
observe that, when the number of application tasks increases,
performance improvement becomes more and more significant.
This is because, through the support of the virtualization
mechanism, a PE is no longer blocked by only an application
task, and it can be used interleavingly by the two application
tasks. However, in a conventional NoC, when an application
task is mapped to a PE, another application task cannot be
mapped to this PE, even though the PE is not used by the
application all the time. According to our experimental results,
the VNoC can accelerate by 1.5x to 2.5x the processing time
required by using the conventional NoC design.

IV. CONCLUSION AND FUTURE WORK

This work proposes an NoC-based virtualization design,
which also provides the support of PRRaaS and PEaaS for
software applications. By using this proposed design, both the
utilization of system resources and system performance can
be further enhanced. All the hardware adaptation processes
are abstracted for the software applications and managed by
the global manager, and thus software programmers can focus
on the development of applications. In the next phase, we
will extend the PE-level virtualization to support at most
four software tasks. Further, the machine-learning method will
be integrated into the adaptation management mechanism to
provide a more intelligent management.
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Abstract—Modern SoC-FPGA that consists of FPGA with
embedded ARM cores is being popularized as an embedded
vision system platform. However, the design approach of SoC-
FPGA applications still follows traditional hardware-software
separate workflow, which becomes the barrier of rapid product
design and iteration on SoC-FPGA. High-Level Synthesis (HLS)
and OpenCL-based system-level design approaches provide pro-
grammers the possibility to design SoC-FGPA at system-level
with an unified development environment for both hardware
and software. To evaluate the feasibility of high-level design
approach especially for embedded vision applications, Vivado
HLS and Altera SDK for OpenCL, representative and most
popular commercial tools in market, are selected as evaluation
design tools, disparity map calculation as targeting application.
In this paper, hardware accelerators of disparity map calculation
are designed with both tools and implemented on Zedboard and
SoCKit development board, respectively. Comparisons between
design tools are made in aspects of supporting directives, accel-
erator design process, and generated hardware performance. The
results show that both tools can generate efficient hardware for
disparity map calculation application with much less developing
time. Moreover, we can also state that, more directives (e.g.,
interface type, array reshape, resource type specification) are
supported, but more hardware knowledge is required, in Vivado
HLS. In contrast, Altera SDK for OpenCL is relatively easier
for software programmers who is new to hardware, but with the
price of more resources usage on FPGA for similar hardware
accelerator generation.

I. INTRODUCTION

Nowadays, SoC-FPGA, which consists of embedded CPUs
(e.g., ARM), programmable logics and a rich set of peripherals,
is being popularised as an embedded system platform in robot
vision field. Zedboard and SoCKit development board are two
typical SoC-FPGA boards supported by Xilinx and Altera,
respectively. However, for a typical application targeting for
SoC-FPGA platform, the hardware part and software part of
the application have to be designed under different devel-
opment environment with different programming languages,
which becomes the barrier of its popularization.

Therefore, high-level design tools, which can design the
application at system-level with high-level programming lan-
guages, are promoted by FPGA vendors, such as Vivado High-
Level Synthesis (HLS) [1] provided by Xilinx, Altera SDK
for OpenCL [2], Stratus HLS [3] by Cadence, Synphony C
Compiler [4] by Synopsys, etc. Besides, many open source
high-level design tools are proposed by academics as well,
e.g., LegUP [5], GAUT [6], ROCCC [7], etc. According to
the difference of supported source file, these design tools can

be categorised into two classes: HLS tools and OpenCL-based
high-level design tools.

A. High-Level Synthesis Tools

Most of high-level design tools, which generate RTL code
from C-based source code (e.g., C, C++, SystemC), can be
categorised into HLS tools, such as Stratus HLS, Vivado
HLS, ROCCC, LegUP, etc. HLS has been studied for years
in research area and only recently starts to be utilised for
real projects. LegUp is one of the best open source high-level
synthesis tool being developed by scholars. LegUp framework
allows researchers to improve C to Verilog synthesis without
building an infrastructure from scratch [8]. However, presently,
only few Altera FPGA boards are supported by LegUP com-
piler and ARM-accelerator hybrid synthesis mode is under
development. Vivado HLS, released by Xilinx, is the most
popular commercial HLS tool in market. It gives user the
possibility to speedup IP creation by enabling C, C++ and
System C specifications to be directly targeted into Xilinx
FPGAs without the need to manually create RTL [1].

B. OpenCL-based High-Level Design Tools

OpenCL-based high-level design, which employs OpenCL
[9] as the programming language, is a relatively new method-
ology for application design on FPGA platform. OpenCL is
an open standard for parallel programming of heterogeneous
systems which can consist of CPU, GPU, DSP, FPGA, etc.
For a typical SoC-FPGA-based embedded system, the system
is usually composed of ARM core, memory and accelerators
that generated by programming logics. If we consider the ARM
core being the host and accelerators being the devices, the SoC
system can be deemed to a heterogeneous system. Therefore,
utilising OpenCL as the high-level design language for SoC-
FPGA is also promising.

Altera SDK for OpenCL is the only commercial tool that
supports OpenCL-based high-level design currently. It provides
user a much faster and higher level software development flow
for Altera FPGAs by abstracting away the traditional hardware
FPGA development workflow [2]. Meanwhile, research that
intends to explore open source framework for OpenCL on
FPGA is also undergoing. For instance, in [10], an simple
OpenCL framework is proposed to evaluate the interconnect
implementation on FPGAs.

Recently, research works that utilise or evaluate high-
level design tools emerged as well. In [11], a tri-diagonal
matrix algorithm is implemented with VHDL, Altera SDK for
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OpenCL, and Vivado HLS, respectively, and then the generated
hardware performance is compared. The possibility of utilising
HLS tools in computational finance field are explored in [12].
LegUp, Altera SDK for OpenCL, Bluespec SystemVerilog
[13], and Chisel [14] design tools are evaluated for database
application accelerations purpose in [15]. All papers conclude
that high-level design tools can dramatically shorten the devel-
oping time and generate proper hardware. However, all these
work are targeting for CPU + FPGA platform. For SoC-FPGA
platform which contains ARM + FPGA, no publish research
result is available yet.

In order to evaluate development experience of high-
level design tools and performance of generated hardware
architecture on SoC-FPGA, especially targeting for embedded
vision applications, disparity map calculation is selected as
the evaluation application; Vivado HLS and Altera SDK for
OpenCL, which are the most mature and commercialised tools
available, as representative design tools; and Zedboard and
SoCKit development board as the corresponding implemen-
tation platform, respectively.

The rest of this paper is structured as follows: Section II
mainly introduces disparity map calculation application. There-
after, the design and implementation process of disparity map
calculation with these two tools are explained and compared
in Section III. Finally, conclusions are drawn in Section IV.

II. DISPARITY MAP CALCULATION

Disparity map calculation, which also known as depth
estimation, is a fundamental but important algorithm widely
used in stereo vision systems.

For a stereo vision system, assuming a 3D world point
S, its projected points on stereo images being Sl(x, y) and
Sr(x

′, y), as shown in Figure 1. According to the geometry
of stereo vision system, the axes of projected points Sl(x, y)
and Sr(x

′, y) are different. To measure this axes difference,
disparity value d is introduced and can be computed by

d = x− x′. (1)

Assuming Sl(x, y) is known, then the process of calculating
disparity d is actually to locate the matching point Sr(x

′, y).
In other words, disparity value calculation for each point is
a stereo matching process. And the process of computing
disparity value for all points between a pair of stereo images
is disparity map calculation algorithm.

Sl(x,y)

(a) Arbitrary point in left image

Sr(x’,y)

d

Sr(x,y)

(b) Locating corresponding point in
right image

Fig. 1: SAD-based stereo matching.

In order to accurately calculate disparity value for each
pixel, various stereo matching algorithms, feature-based ap-
proaches (e.g., SIFT [16], SBM [11], etc.) and intensity-based
approaches (e.g., SAD [17], SSD, etc.) are proposed. Here we
don’t want to explain in detail or compare different disparity
map calculation algorithms since this is out of our topic. For
the sake of simplicity, most typical Sum of Absolute Difference
(SAD)-based stereo matching algorithm [17] is employed and
implemented.

Referring to Figure 1, if we use a N×N floating window
for each image with Sl(x, y) and Sr(x, y) being their respec-
tive centers, differences exist between two window blocks.
However, if the center points being Sl(x, y) and Sr(x

′, y),
respectively, little differences should exist. To measure these
intensity differences, Sum of Absolute Difference (SAD) is
introduced and calculated. If we denote Td(x, y) as the SAD
of Sl(x, y) and Sr(x−d, y), Td(x, y) can be computed by

Td(x, y) =
∑

(i,j)∈N

|Sl(x+i, y+j)−Sr(x−d+i, y+j) | . (2)

Since the matching pixel in right image Sr(x
′, y) should

be on the left side of Sl(x, y), pixel by pixel left shifting of
the floating window is executed and the SAD is calculated for
each shifting. Assuming the maximum disparity as M , after
M times shifting and computing, the minimum SAD T(x, y)
can be obtained by

T (x, y) = min
d∈M

Td(x, y), (3)

and its corresponding disparity as the true disparity value at
point (x, y). Repeat this process for each pixel until disparity
map of the whole image is obtained.

III. IMPLEMENTATION ON SOC-FPGA

After we are familiar with the SAD-based disparity map
calculation algorithm, in this section, disparity map calculation
accelerator is designed and implemented with both Vivado
HLS and Altera SDK for OpenCL tools. The detailed imple-
mentation process is explained as follows.

A. Accelerator Design with Vivado HLS

From the SAD-based disparity map calculation process
description in Section II, we can notice that, for each pixel,
M times SAD operations should be executed and each SAD
operation is composed of N×N pixels reading from each im-
age, N×N times absolute difference calculation, and N×N−1
time absolute difference addition. It is obvious that too much
memory accesses and computing logics are required for each
pixel processing, which can be difficult for efficient hardware
architecture generation on SoC. Therefore, some optimization
techniques, especially for FPGA hardware implementation, are
performed.

1) Preserving Intermediate Results: Originally, the abso-
lute difference for each pixel-pair will be calculated N×N
times. By preserving the absolute difference results, absolute
difference operation for each pixel-pair only need to be ex-
ecuted once, therefore, much less computation resources are
required. Meantime, simpler computation logic can simplify
the pipeline architecture generated as well. The only price of
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preserving intermediate results is that more local memories
are required for intermediate data preservation. But comparing
to the computation quantity that simplified, the cost is pretty
small. In our application, column-SAD is the actual interme-
diate result being preserved, since it is difficult to explain
column-SAD before describing the disparity map calculation
process, it will be explained later in this section.

2) Utilising Local Memory: In disparity map calculation
application, N×N pixels from each image should be read in
in each pixel processing cycle, which is impossible due to the
memory ports limitation. Utilising local memory, especially
for image processing applications, which can store a few lines
of image pixels, can dramatically improve the pixel accessing
performance. The local memory size can be calculated by
delicate hardware design. In our case, N×N floating window
for each pixel pair is processed, if one pixel read in and
one pixel processing is performed each cycle, N lines pixels
storage for each image are required. One pixel from each image
is read in per cycle, when the fifth pixel of last row of local
memory is read in, disparity map calculation process starts.
If local memory is full-filled with pixels, new data will be
stored from the first element of local memory again. If we
denote the image width as w, the local memory size should
be 2N×w. Besides, intermediate results can also be stored in
local memory.

3) Utilising Shifting Registers: Utilising Shifting registers
is an effective approach commonly used in FPGA design
with Verilog/VHDL. Vivado HLS also provides the support
for hardware generation shifting registers by simply adding
directives. Shifting all registers left or right and then reading
in new data guarantees that the latest data is always stored at
the same location of register array. This can greatly simplify
the indexing problem in local memory and is extremely useful
for our col-SAD register table. Moreover, efficient/pipelined
hardware architecture is easier to be generated with shifting
registers utilisation.

4) Other Techniques: Some other techniques are deployed
in our application as well, e.g., loop unrolling, pipeline dec-
laration, resource core specification. Since these directives are
simple and straightforward, the explanations will be omitted
here.

With the techniques mentioned above, the disparity calcu-
lation processes as follows. Referring to Figure 2, N×w size
local memory LM and RM are used as N -line-pixels buffers
for left and right image, respectively. LR is a N size register
array that used to store one column pixels which will be read
from LM local memory. RRi is an M column registers table
that each column can preserve one column pixels from RM
local memory, with i = {0, 1, . . . ,M −1}. col-SADs is an
M×(N+1) size shifting registers table which is used to store
column-SADs.

For each cycle, the right image buffer RRi and col-SADs
perform one-pixel-left column-shifting. Thereafter, one pixel
is read in from each image to local memory LM and RM ,
respectively. And one column pixels are read in from local
memory LM and RM to register array LR and last column of
register table RRi, respectively. Column SADs are calculated
between LR and each column of RRi. The results, according
to different disparities, are stored into the last column of col-

...

D0,0 ...

...

...

...

......

LR RRi

Left Image Right Image

col-SADs

D0,1

D0,2

D0,M-1

DN,0

DN,1

DN,2

DN,M-1

Disparity = 0

Disparity = 1

Disparity = M-1

LM RM

Fig. 2: Disparity map calculation process illustration.

SADs register table. For instance, the col-SAD of LR and RR0

is stored in the first element of last column of col-SADs DN,0;
LR and RRM−1 col-SAD result is stored in DN,M−1; so on
and so forth. Meanwhile, the first N columns (0 to N−1) of
col-SADs perform row sum, which is to get the SAD for each
disparity. Finally the smallest sum corresponding disparity is
selected as the real disparity at this point.

This approach reduces the memory access by using local
memory and reduces computation by preserving col-SADs.
Although, for every new line, all data in shifting registers need
to be reloaded or recalculated. But since the computing process
is pretty suitable for pipeline processing, efficient hardware
architecture can be generated.

In this paper, 640×480 stereo images are used as input and
Zedboard is deployed as the targeting SoC board. After we
connect HLS generated accelerator with ARM core in Vivado,
generate bitstream and on board testing, the results are finally
obtained and listed in Table I. As Table I shows, different
window size and max disparity settings are set up and the
resources usages on Zedboard are listed as well. The reason
we select these setups is in order to make the comparison with
Altera SDK for OpenCL generated hardware. Because many
shifting registers and computing resources are utilised in the
algorithm, therefore, a lot of logics are used on Zedboard. As
for the memory usage, only two N -line-pixels are stored in
local memory, which is relatively little portion on Zedboard.
The last column of Table I lists the running FPS of disparity
map calculation accelerator on Zedboard. It is obvious that FPS
228 doesn’t really change with different setups. The reasonable
explanation for that is deep pipelined hardware is generated for
each setup, which means one pixel processing each clock cycle
is truly executed. Therefore, for the same resolution rate stereo
images, similar running FPS should be obtained on board.
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Setup Resource Usage FPSWindow Size Max Disparity Logic Mem DSP
7× 7 80 60.8% 5% 0% 228
9× 9 64 59.8% 6% 0% 230
9× 9 78 83.3% 6% 0% 228
9× 9 80 84.6% 6% 0% 228

TABLE I: Results of disparity map calculation with Vivado
HLS generated accelerator.

B. Accelerator Design with Altera SDK for OpenCL

Unlike C++ as our application source file type in Vivado
HLS, Altera SDK for OpenCL utilises OpenCL as its uni-
fied programming language for both hardware and software,
therefore, some OpenCL framework setup operations, such as
platform setup, memory setup, etc., should be added into the
original source file first. However, before touching the kernel
code with OpenCL, one thing we should determine is which
kind of kernel structure shall be deployed: single work-item
kernel or NDRange kernel.

Altera SDK for OpenCL supports two different types of
kernel, NDRange kernel and single work-item kernel. Single
work-item kernel can also be seen as a (1, 1, 1) NDRange
kernel. But for Altera SDK for OpenCL, different directives
and compiler behaviours are supported for different type of
kernel. Therefore, proper kernel type should be deployed
according to application characteristics. For the application
with lots of data dependency or many loops, single work-item
kernel can generate efficient pipelined hardware architecture
and boost up the performance. On the contrary, if little data
dependency or loops exist in the application, NDRange kernel
can execute multiple Processing Elements (PEs) in parallel and
improve the processing efficiency [18]. In our case, according
to the calculation process in Section II, nested loops and data
dependency exist. Therefore, single work-item kernel should
be a better choice for our application. As a matter of fact,
for single work-item kernel, the kernel code is similar to the
original C code, therefore, only some specifications/directives
are required.

Since the application is already well optimised with some
techniques and directives in Section III-A, similar techniques
are used in Altera design tool version as well. However, unlike
Vivado HLS, Altera SDK for OpenCL doesn’t provide any
assistant window to help with the directive addition, therefore,
all the directives must be added manually according to the user
guide document [18] [19]. Thereafter, setting up same param-
eters (window size and max disparity) as in Vivado HLS, the
whole system (hardware and software) is generated for SoCKit
Development board. Unlike Vivado HLS, no further design
or processing is required for embedded system generation.
After on board testing with generated hardware architecture,
the resource usage and performance results are obtained and
listed in Table II.

From Table II, we can state that, efficient hardware ac-
celerator can be generated with Altera SDK for OpenCL as
well. But due to the resource limitation on SoCKit, which is
actually similar to Zedboard, with 9×9 window size setting-
up, only 78 maximum disparity can be achieved. Moreover,

Setup Resource Usage FPSWindow Size Max Disparity Logic Mem DSP
7× 7 80 75% 23% 0% 242
9× 9 64 82% 29% 0% 208
9× 9 70 89% 29% 0% 198
9× 9 78 98% 29% 0% 193

TABLE II: Results of disparity map calculation with Altera
SDK for OpenCL generated accelerator.

Table II also shows that, comparing to Vivado HLS generated
hardware, around 10% more programming logics are use.
As for memory usage, in OpenCL programming model, the
whole stereo images are stored in the allocated global memory,
therefore, much more memory is and should be utilised.

C. Comparison

After we design and implement disparity map calculation
application with Vivado HLS and Altera SDK for OpenCL,
respectively, we can conclude that, both tools can generate
efficient hardware architecture with much shorter developing
time. But the tools themselves and development experiences
with them are actually quite different. Vivado HLS is a tool
that used to speedup hardware accelerator (IP) design and
creation on FPGA. The generated file is IP core, which can
be connected to other IP or ARM in Vivado system design.
Therefore, some work should be done in Vivado as well and
hardware knowledge is necessary for the user. Besides, more
directives, such as memory type, interface, loop control, etc.,
are supported in Vivado HLS. By contrast, Altera SDK for
OpenCL is a tool provided for software programmers, which
means little hardware knowledge is required for user and much
easier workflow for the whole process. However, comparing to
Vivado HLS, less directives are supported and more difficult to
debug applications. Of course, OpenCL knowledge is required
for the programmer.

IV. CONCLUSION

This paper explores high-level design approaches on SoC-
FPGA platform with disparity map calculation as the tar-
geting application. Vivado High-Level Synthesis (HLS) and
Altera SDK for OpenCL, two representative and most mature
commercial tools, are selected as the design tools. Zedboard
and SoCKit development board are the corresponding imple-
mentation SoC-FPGA, respectively. Hardware accelerators of
disparity map calculation are designed with Vivado HLS and
Altera SDK for OpenCL, respectively, and comparisons are
made for the implementation process and generated hardware
performance. From the comparison, we conclude that, both
design tools can generate efficient hardware for disparity map
calculation application with much less developing time. For
640×480 stereo images, window size being 9×9, and max
disparity being 80 (78 in Altera SDK for OpenCL), 228 and
193 fps disparity map calculation can be achieved, respectively.
However, for same algorithm and setups, more resources on
FPGA are used for the accelerator implemented by Altera SDK
for OpenCL. Besides, more hardware knowledge is required
for Vivado HLS user and Altera SDK for OpenCL is more
suitable for software programmers.

78



REFERENCES

[1] “Xilinx High-Level Synthesis,” http://www.xilinx.com/products/design-
tools/vivado/integration/esl-design.html.

[2] “Altera SDK for OpenCL,” https://www.altera.com/products/design-
software/embedded-software-developers/opencl/overview.html.

[3] “Stratus High-Level Synthesis,” http://www.cadence.com/products/sd/str-
atus/pages/default.aspx.

[4] “Synphony C Compiler,” https://www.synopsys.com/Tools/Implementat-
ion/RTLSynthesis/Pages/SynphonyC-Compiler.aspx.

[5] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski, “LegUp: High-level Synthesis
for FPGA-based Processor/Accelerator Systems,” in Proc. of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, New York, NY, USA, Feb. 2011, pp. 33–36.

[6] P. Coussy, C. Chavet, P. Bomel, D. Heller, E. Senn, and E. Martin,
“GAUT: A High-Level Synthesis Tool for DSP Applications,” in
High-Level Synthesis, P. Coussy and A. Morawiec, Eds. Springer
Netherlands, 2008, pp. 147–169.

[7] “RoCCC 2.0,” https://www.http://roccc.cs.ucr.edu.
[8] “LegUP,” http://legup.eecg.utoronto.ca.
[9] A. Munshi, “The OpenCL Specification.” Khronos OpenCL Working

Group, 2009.
[10] V. Mirian and P. Chow, “Using an OpenCL framework to evaluate

interconnect implementations on FPGAs,” in Proc. of 2014 24th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), Sept 2014, pp. 1–4.

[11] X. Fan, X. Wang, and Y. Xiao, “A Shape-Based Stereo Matching Algo-
rithm for Binocular Vision,” in Proc. of 2014 International Conference
on Security, Pattern Analysis, and Cybernetics (SPAC), Wuhan, China,
Oct. 2014, pp. 70–74.

[12] Q. Gautier, A. Shearer, J. Matai, D. Richmond, P. Meng, and R. Kastner,
“Real-time 3D Reconstruction for FPGAs: A Case Study for Evaluating
the Performance, Area, and Programmability Trade-offs of the Altera
OpenCL SDK,” in Proc. of 2014 International Conference on Field-
Programmable Technology (FPT), Shanghai, China, Dec. 2014, pp.
326–329.

[13] “Bluespec, Inc,” http://www.bluespec.com/.
[14] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis,

J. Wawrzynek, and K. Asanovic, “Chisel: Constructing hardware in a
Scala embedded language,” in Proc. of 2012 49th Design Automation
Conference (DAC), June 2012, pp. 1212–1221.

[15] O. Arcas-Abella, G. Ndu, N. Sonmez, M. Ghasempour, A. Armejach,
J. Navaridas, W. Song, J. Mawer, A. Cristal, and M. Lujan, “An
Empirical Evaluation of High-Level Synthesis Languages and Tools for
Database Acceleration,” in Proc. of 24th International Conference on
Field Programmable Logic and Applications (FPL), Munich, Germany,
Sept. 2014, pp. 1–8.

[16] D. Lowe, “Object Recognition From Local Scale-Invariant Features,”
in Proc. of the Seventh IEEE International Conference on Computer
Vision, vol. 2, Kerkyra, Greece, Sept. 1999, pp. 1150–1157.

[17] S. Vassiliadis, E. Hakkennes, J. Wong, and G. Pechanek, “The Sum-
Absolute-Difference Motion Estimation Accelerator,” in Proc. of 24th
Euromicro Conference, vol. 2, Vasteras, Sweden, Aug. 1998, pp. 559–
566.

[18] “Altera SDK for OpenCL Best Practices Guide,” May 2015.
[19] “Altera SDK for OpenCL Programming Guide,” May 2015.

79



RIPL: An Efficient Image Processing DSL for FPGAs

Robert Stewart & Greg Michaelson
Mathematical & Computer Sciences

Heriot-Watt University
Edinburgh, UK

{R.Stewart,G.Michaelson}@hw.ac.uk

Deepayan Bhowmik & Andrew Wallace
Engineering & Physical Sciences

Heriot-Watt University
Edinburgh, UK

{D.Bhowmik,A.M.Wallace}@hw.ac.uk

Abstract—Field programmable gate arrays (FPGAs)
can accelerate image processing by exploiting fine-
grained parallelism opportunities in image operations.
FPGA language designs are often subsets or extensions
of existing languages, though these typically lack suit-
able hardware computation models so compiling them
to FPGAs leads to inefficient designs. Moreover, these
languages lack image processing domain specificity. Our
solution is RIPL1, an image processing domain specific
language (DSL) for FPGAs. It has algorithmic skeletons
to express image processing, and these are exploited
to generate deep pipelines of highly concurrent and
memory-efficient image processing components.

I. Introduction

FPGAs can be configured directly with hardware de-
scription languages, though these require hardware exper-
tise and come with the cost of long debugging stages to
remove design errors. Alternatives include high level syn-
thesis tools to compile existing imperative languages, and
dataflow languages that abstract the highly concurrent na-
ture of FPGA hardware. However, the absence of suitable
hardware to support the imperative model make compiling
them to FPGAs very inefficient, and dataflow languages
burden programmers with wiring together computations
explicitly.

RIPL abstracts dynamic dataflow process networks
(DPNs) by hiding actors and wires, and inherits DPN
hardware abstractions of clocks, signals, registers and
memory. The RIPL programmer uses a collection of built
in image processing skeletons, and the compiler automat-
ically extracts parallelism from the program, to generate
deeply pipelined and memory efficient FPGA designs.

II. Design

A. Requirements & Constraints

Higher order computer vision algorithms are composed
of lower level image operations. Prototypical image pro-
cessing operations can be classified in terms of the locality
of their data access requirements: pixel to pixel functions
on points, neighbourhood pixels to pixel functions on
regions, and global operations on entire images.

The memory constraints of FPGAs mean that many
CPU & GPU methods for parallel image processing cannot
be adopted for FPGA image processing implementations.

1Rathlin Image Processing Language

Software techniques often store arrays whose sizes matches
complete images, and apply data-parallel kernels in a vec-
torised single instruction multiple data (SIMD) or coarse
grained single instruction multiple threads (SIMT) fashion.
These image processing models are prohibitive for FPGA
implementations, because on-chip memory is a very scarce
resource, and the global shared memory model is not
suitable for the inherently fine grained concurrent nature of
FPGAs. Modern CPUs have access to around 2MB cache
and 64GB of RAM, which are treated as a large shared
memory block. In contrast for example, a modern Virtex
7 FPGA has a total of just 8.5MB of available on-chip
block RAM (BRAM) memory.

B. RIPL Overview

RIPL is a functional language with single assignment
semantics. It comprises domain specific image processing
types, functions and algorithmic skeletons [1]. RIPL’s
algorithmic skeletons are reusable parameterised descrip-
tions of task-specific image processing architectures and
are exploited to generate pipelines of image operations.
The skeletons process pixel vectors in rows, columns and
regions with computation kernels, which are lightweight
functions that traverse over images.

An illustration of pipelined skeleton composition is in
Figure 1. The RIPL skeletons API is shown in Figure 2,
using standard notation for function type signatures, e.g.
mapRow takes as arguments: an M × N image, a function
from a vector of A pixels to a vector of A pixels, and
returns an M × N image. The map skeletons are element
or column/row wise mappings from pixels to pixels. The
zipWith skeleton takes two images and merges them into
a single stream with some user defined merging function.
The combine skeleton takes entire rows or columns from
two images and merges them into a single stream with
built-in RIPL operator, such as append. The convolve
skeleton is parameterised by a window dimension and
computes pixel values from a neighbourhood of pixels.
The fold skeleton is parameterised by an initial value
and applies global operations over an image and returns a
scalar value or a vector.

RIPL uses index types to impose the constraint that all
skeletons operate on images with bounded shapes known
at compile time. For example, an inferred indexed data
type Im(50,40) is an image of width 50 and height 40,
and [P ]8 is a vector of 8 pixels. This allows the RIPL
compiler to generate actors with static arrays from these
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indexed data structures, enabling HDL synthesis tools to
make optimal memory implementation choices about static
structures, i.e. look-up tables (LUTs) for small arrays or
with combined BRAM blocks for larger arrays.

Fig. 1. Pipelining skeleton compositions

mapRow : Im(M,N) → ([P ]A → [P ]A) → Im(M,N)

mapCol : Im(M,N) → ([P ]A → [P ]A) → Im(M,N)

concatMapRow : Im(M,N) → ([P ]A → [P ]B) → Im(B/A∗M,N)

concatMapCol : Im(M,N) → ([P ]A → [P ]B) → Im(M,B/A∗N)

zipW ithRow : Im(M,N) → Im(M,N) → (P → P → P ) → Im(M,N)

zipW ithCol : Im(M,N) → Im(M,N) → (P → P → P ) → Im(M,N)

combineRow : Im(M,N) → Im(M,N)

→ ([P ]A → [P ]A → [P ]B) → Im(B/A∗M,N)

combineCol : Im(M,N) → Im(M,N)

→ ([P ]A → [P ]A → [P ]B) → Im(M,B/A∗N)

convolve : Im(M,N) → (a, b) : (Int, Int)
→ ([P ]a∗b → P ) → Im(M,N)

foldV ector : Im(M,N) → Int → s : Int

→ (P → [Int] → [Int]) → [Int]s
foldScalar : Im(M,N) → Int → (P → Int → Int) → Int

Fig. 2. RIPL skeletons API

III. Implementation

A. RIPL to Dataflow

The RIPL compiler uses the dynamic dataflow process
network (DPN) model as an intermediate representation
between the DSL and FPGA implementations. To address
FPGA memory limitations, the compiler eliminates inter-
mediate image arrays by feeding rows and columns through
concurrent phases of a pipeline. The kernel at each phase
is provided only the pixel values they need to execute.
Costly intermediate arrays are therefore avoided for local
and regional data access patterns with RIPL skeletons.

Thanks to RIPL’s single assignment semantics, implicit
data dependencies in skeleton compositions are exploited
to generate deeply pipelined graphs from RIPL programs.
The vertices (actors) represent image operations and the
edges (wires) represent dataflow between composed opera-
tions. Transposition actors are added whenever a row wise
skeleton is composed with a column wise skeleton, and vice
versa. Informally, the mapping from skeletons to graphs is
as follows. A skeleton instance maps to one actor. The
arity of a skeleton maps to the number of input ports the
corresponding actor has. The number of output ports of an

actor is dictated by the number of other skeletons that use
the output image of the skeleton. Implicit dataflow in the
composition of skeletons is lifted to explicit wires between
actors. The user defined function to a skeleton becomes a
fireable rule inside the actor. The graph is mapped onto
FPGAs to exploit two kinds of pipelined parallelism: 1)
to feed the rows/columns of an image through different
pipeline stages, and 2) to feed multiple video frames into
the FPGA fabric concurrently.

B. Dataflow to FPGAs
The generated dataflow graph is expressed with the

CAL actor language [2]. An existing CAL to Verilog
compiler [3] is used to add an interface protocol for actor
interconnects and an explicit clock to all actor components,
then lowers the graph to an FPGA abstraction adding
signals, registers, FIFOs and shared memories. Generic
memories are used for arithmetic operations, registers and
actor interconnects, allowing HDL synthesisers to choose
from LUT or BRAM instantiations, depending on holistic
memory requirements and on the FIFO depths needed to
support implicit dataflow dependencies in RIPL programs.

IV. Discussion & Conclusion
In this abstract we present RIPL, a high level im-

age processing DSL for FPGAs. It has high level image
processing skeletons familiar to software programmers,
which are exploited to generate deep pipelines of memory-
efficient image processing operations. RIPLs underlying
dynamic dataflow model supports different image data
access patterns using skeletons. The aim of RIPL is to
maximise clock frequency to increase throughput, and
to minimise BRAM use to fit complex algorithms onto
FPGAs. RIPL has been used to implement image wa-
termarking and multi-dimensional subband decomposition
algorithms. We believe that RIPLs underlying dynamic
DPN semantics provides greater levels of expressivity
compared to other image processing FPGA languages.
Ongoing work includes evaluating the expressivity of RIPL
with a comprehensive collection of case studies. We plan
on integrating RIPL with a performance guided dataflow
transformations framework we are developing [4].
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Abstract—In recent years, architectures combining a recon-
figurable fabric and a general purpose processor on a single
chip became increasingly popular. Such hybrid architectures
allow extending embedded software with application specific
hardware accelerators to improve performance and/or energy
efficiency. Aiding system designers and programmers at handling
the complexity of the required process of hardware/software
(HW/SW) partitioning is an important issue. Current methods
are often restricted, either to bare-metal systems, to subsets of
mainstream programming languages, or require special coding
guidelines, e.g., via annotations. These restrictions still represent a
high entry barrier for the wider community of programmers that
new hybrid architectures are intended for. In this paper we revisit
HW/SW partitioning and present a seamless programming flow
for unrestricted, legacy C code. It consists of a retargetable GCC
plugin that automatically identifies code sections for hardware
acceleration and generates code accordingly. The proposed work-
flow was evaluated on the Xilinx Zynq platform using unmodified
code from an embedded benchmark suite.

I. INTRODUCTION

Today, embedded hybrid platforms combining field pro-
grammable gate arrays (FPGA) and high performance RISC
processing cores give the user the freedom to implement
specialized peripherals in the FPGA fabric while still relying
on the execution power of the RISC processor(s). The Xilinx
Zynq system on chip (SoC) family and the Altera Cyclone/Ar-
ria V SoC are prominent examples for this approach.

Such devices pave the path for the integration of arbitrary
hardware accelerators in complex applications, however, most
software developers are not familiar with hardware description
languages (HDL). Thus, they are unable to develop application
specific accelerators on their own. This problem has been
addressed in the past by many researchers. Yet, the proposed
solutions are not satisfactory. The user still has to write his
own HDL code, has to take care of the HW/SW partitioning
(often by annotating the existing code) and has to create the
required SW/HW interfaces.

Our approach aims to notably lower the entry barrier for
software developers to hardware-accelerated program execu-
tion. This particularly means using plain unannotated C, which
is a popular and established language, as input. In this way,
we bring hardware acceleration to a broader range of general
applications. We envision a transparent workflow ideally not
demanding any HDL skills or knowledge about the underlying

hardware platform from the developer, providing seamless
integration with the software environment.

The contributions of this paper are:
• Automated HW/SW partitioning using a GCC-plugin

that extracts accelerators from C code and generates
synthesizable HDL code.

• Automated and platform agnostic code patching enables
seamless integration with software environment. Accel-
erator invocation remains completely transparent with
optional fall-back to software execution.

• Support for legacy application code without annotations.
The rest of this paper is organized as follows. Section II

presents the related work. In Section III we introduce the target
hardware platforms of our proposed workflow. Section IV
describes our workflow, the compiler plugin and its integration
into GCC. Sections V and VI present the evaluation of our
approach and discuss results. The remaining Sections draw
conclusions and point out future work.

II. RELATED WORK

Since the emergence of FPGAs, many efforts have been
made to exploit the performance gain offered by reconfigurable
logic with customized hardware accelerators. This especially
holds true for hybrid FPGA architectures tightly coupling a
general purpose processor with reconfigurable logic.

The most obvious, flexible but also the most challenging
way is to write accelerators by hand using an HDL and
manually perform all required integration with the software en-
vironment. An example is shown in [1]. Designing accelerator-
based systems that way, requires strong skills in HDL as well
as deep knowledge of the underlying hardware platform. The
development process usually is time consuming and error-
prone. Hence, the ability to implement such systems is left
to the relatively small community of FPGA developers.

A number of approaches have been presented that reduce
or even completely eliminate the necessity of writing HDL.
The goal is to generate synthesizable code for accelerators
from a more abstract problem description. LegUp [2] is an
open source high-level synthesis (HLS) tool for FPGA based
hybrid systems. The HW/SW partitioning is determined by
profiling the C program on a self-profiling processor and
altering the software binary afterwards in order to run it on
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the hybrid system. In [3] the authors present basic support
for ARM-FPGA hybrid SoCs. In [4] the authors present
Nymble, a system based on the techniques introduced by
COMRADE [5]. It allows a much larger scope for accelerators
by supporting a mechanism for back-delegation of unsuitable
code sections into software. For HW/SW partitioning, Nymble
requires additional code annotations using pragmas.

Nymble as well as LegUp use Low Level Virtual Machine
(LLVM) as compiler framework. As shown in [6], the Gnu
compiler collection (GCC) has been used for HLS workflows
as well. The authors show a customized GCC compiler for
generation of hardware accelerators for a bare-metal soft-core
processor. Our work extends C-to-HDL transformations for
better integration in more complex systems.

The Delft Workbench [7] is a toolset providing semi-
automatic HW/SW partitioning as well as HLS for FPGA.
The targeted Molen machine architecture can be regarded as
hybrid FPGA-processor architecture. The candidate kernels for
hardware acceleration are determined by profiling but must be
extracted manually.

Xilinx provides Vivado [8], [9], one of the most popular
commercial HLS tools. It supports translating C, SystemC or
C++ code directly into hardware. Vivado aims at mapping
the whole application to hardware, which requires manual
HW/SW partitioning by the user. Similar to Vivado, other
HLS tools like ROCCC [10] or CATAPULT [11] provide
sophisticated hardware synthesis for hardware-only solutions,
with no support for a hybrid HW/SW translation. In [12] the
authors present a framework that matches portions of C code
(algorithmic skeletons) exposing specific memory access pat-
terns against a library of known accelerator templates. In [13]
authors particularly address the integration of accelerators
with the software domain. They present a linker that creates
an executable by transparently linking functions implemented
in software objects and/or hardware accelerators. With the
runtime environment provided, programs can be executed on
a Zynq platform running embedded Linux.

Most of the approaches mentioned so far address a certain
task related to accelerator generation or integration, but the
user still has to perform manual work. This requires, even
though to a lesser extent, knowledge of HDL and the underly-
ing hardware platform. In contrast, the work in [14] raises the
level of abstraction to completely hide the HW/SW boundary
from the software developer. The work in [14] applies the
principle of binary acceleration, which means identifying
sequences of processor instructions worthy of acceleration at
runtime and migrating them to specialized execution units.
However, live application analysis and accelerator synthe-
sis typically require a reasonable amount of computational
resources, pushing todays embedded runtime environments
towards their limits.

A promising solution to the issues left open by the ap-
proaches mentioned above is to rethink the entire design
flow. This has been done by the Liquid Metal project [15].
The authors developed the Lime language [16], enabling
programmers to describe a system in a hardware-friendly but

still object-oriented manner. Lime programs can be compiled
either into pure software binaries or into software and a set
of hardware accelerators. All interfacing is done automatically
by the runtime environment. Introducing a well tailored lan-
guage circumvents limitations that arise from using existing
languages. However, adopting a new language is a high entry
barrier for most programmers and existing software must be
ported to benefit from hardware acceleration.

III. PLATFORM

The work presented in this paper especially addresses re-
cent hybrid platforms combining embedded processors with a
reconfigurable fabric. In this section we briefly describe one
such system, namely, the ZedBoard evaluation kit containing
a Xilinx Zynq-7000 [17] device.

The programmable logic (PL) in the Zynq-7000 device is
a full Artix-7 FPGA fabric, while the processing system (PS)
is a complete ARM subsystem featuring a Cortex-A9 dual
core processor and a comprehensive set of peripherals. The
PS provides four 32-bit general purpose (GP) AXI interfaces,
which allow connecting peripherals from the PL as well
as four full-duplex 64-bit high performance (HP) interfaces
for connecting AXI masters residing in the PL. The Zynq
architecture provides one special high performance interface
connected to the Accelerator Coherency Port (ACP). The
ACP is internally connected to the ARM Snoop Control Unit
and can be used for cache coherent accesses to the ARM
subsystem.

It should be noted, that the specific handling of these
different AXI interfaces depends on the hardware residing
in the PL which presumes a profound understanding of the
hardware accelerator.

IV. WORKFLOW

The workflow for transparent HW/SW partitioning and
compilation is composed of four steps as shown in Figure 1.
(1) loop data collection performs a whole-program analysis
collecting information about all loops across all compilation
units. (2) loop analysis uses that information to select loops
for potential HW acceleration, using a cost model of the
target platform. (3) hardware generation performs an HLS of
the loops selected by the previous step and (4) application
modification adapts the original software code to integrate the
accelerators and finally generates the application binaries.

Before discussing the steps in detail in Sections IV-B
through IV-E, we briefly describe the compiler framework that
was used for the workflow.

A. Compiler Framework and Integration

The workflow in Figure 1 was implemented as two plugins
for the GCC C compiler. GCC is one of the most widely used
compilers for software development for embedded systems.
Using such a mature and widely-used compiler framework
helps to provide a full transparent workflow for software
programmers.
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Figure 1. Abstract workflow for automatic accelerator generation

GCC follows the traditional compiler structure divided into
front-end, middle-end and back-end. Our analysis and transfor-
mations are performed in the middle-end on GIMPLE, GCCs
internal intermediate representation. GIMPLE basically is a
control flow graph (CFG) organized in basic blocks (BB) each
containing statements in static single assignment (SSA) form.
GIMPLE is further transformed into GCCs internal register
transfer language (RTL) which finally is used by the compiler
back-end to generate target specific machine code. All internal
processing in GCC is controlled by its pass manager, while a
pass refers to a certain transformation applied to the internal
representation of the current compilation unit. In order to
implement the steps depicted in Figure 1, custom passes are
inserted using the pass manager.

To reason about the benefits of implementing a certain
accelerator, one requires a global view of the application.
However, GCC processes each file as separate compilation
unit, which hinders whole program analysis. To overcome
this drawback, GCC provides a link time optimization (LTO)
framework which enables assorted optimizations during link
time by storing the GIMPLE representation of each trans-
lation unit in the associated object file. Unfortunately, LTO
only provides limited hooks for custom passes. We enable
whole program analysis without using LTO by running the
compilation flow twice (left and right part of Figure 1). The
first run collects all information providing the second run
with an overall view of the whole application. This global
view is required in order to find accelerator candidates. The
two consecutive compiler runs are wrapped by GNU Make to
remain transparent to the user.

Since version 4.5.0 GCC provides a plugin interface for
custom optimization passes, which are invoked by the pass
manager using callback functions. The passes described in
the following sections are implemented as two plugins for
GCC 4.8.3, the collector plugin and the synthesis plugin. As
the plugins work with an existing compiler binary, building
a cross compiler for the target architecture is not required.
Nevertheless, the plugins themselves must be built for a
specific target architecture and hardware interface. Currently,
we support the ARM architecture with AXI bus interface and
an additional FPGA-based soft-core processor [18] using its
proprietary bus interface.

1 int fun3(int a, int b);
2 int fun1(int a, int b) {
3 int c;
4 for (int i=0; i<10; i++)
5 c += fun2(b + a, a - b);
6 return c;
7 }
8 int fun2(int a, int b) {
9 for (int i=0; i<30; i++) {

10 a += fun3(a, b);
11 b -= a;
12 }
13 return a+b;
14 }

Listing 1. Source code of unit1.c

1 int fun3(int a, int b) {
2 for (int i=0; i<100; i++) {
3 a += b;
4 if (a > 200 )
5 break;
6 b--;
7 }
8 return a;
9 }

Listing 2. Source code of unit2.c
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Figure 2. First GCC run invoking the collector plugin

B. Loop Data Collection

The first GCC run invokes the collector plugin (step 1 in
Figure 1), which implements the two custom passes collect
functions (CF) and collect loops (CL) as shown in Figure 2.
The CF pass is executed after all the inter-procedural passes
(IPAs) have run. At this point, the compiler knows all functions
declared and called in the translation unit. This information is
preserved for later use. The CL pass runs after the GIMPLE
loop optimizer passes, when all loops in the translation unit
have been processed by the compiler. We now collect the
compilers internal profiling data for each loop, which includes
the local iteration count and a list of called functions and
accessed memory locations. The data gathered by the passes
CF and CL is accumulated in a single analysis transcript file.

Listing 3 shows a simplified version of the analysis tran-
script file after compiling the source files shown in Listings 1
and 2. The property well_nested indicates whether a loop
or loop nest is synthesizable at all. Since loop 1 and 2 both
include function calls, fun2 and fun3 respectively, only loop
3 will further be considered for accelerator generation.

C. Loop Analysis

The second GCC run invokes the synthesis plugin (steps
2, 3 and 4 in Figure 1) which implements the custom pass
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1 unit1.c
2 function=fun2
3 loop1
4 count=29
5 call=1
6 well_nested=0
7 -fun3
8 function=fun1
9 loop2

10 count=9

11 call=1
12 well_nested=0
13 -fun2
14

15 unit2.c
16 function=fun3
17 loop3
18 count=99
19 call=0
20 well_nested=1

Listing 3. Analysis transcript file after compiling unit1.c and unit2.c

Sources
Application

Front End Middle End

IPA
Passes

GIMPLE
Passes

 Synthesize
Loops

Generic

HDL

Binary
Objects

0011110
1100101
1101100
1101010

0101011

Back End

RTL

Analysis
Transcript

Figure 4. Second GCC run invoking the synthesis plugin

synthesize loops (SL) as shown in Figure 4. To ensure con-
sistency of GCCs internal GIMPLE representation, the passes
CL (first run) and SL (second run) must be invoked at the
same processing stage within each run. In step 2 the SL pass
reads the transcript file written by the collector plugin and
constructs a call graph for the whole application. Based on this
graph the total iteration count for each loop is estimated. Now,
by default, all loops are ordered by their total iteration count
in order to select the first n loops or loop nests as synthesis
candidates. The value for n is a runtime parameter for the
compiler plugin and the sorting function is customizable to
consider other loop properties, e.g. instruction count. This
enables the implementation of an arbitrary cost model to sort
the loops.

D. Hardware Generation

In step three of our workflow we generate an HDL imple-
mentation for all loops selected by the previous step. This
is accomplished by translating the GIMPLE CFG of each
loop or loop nest into a finite state machine (FSM). If this
step discovers GIMPLE statements or operands which cannot
be handled, a compiler warning is generated and the loop
candidate is rejected.

During the generation of the FSM a number of optimiza-
tion techniques are applied. Namely, speculative execution of
conditional branches in parallel, list or modulo scheduling,
and chaining of consecutive arithmetic operations. We do not
explicitly address resource sharing, since FPGA vendor tools
achieve better results for that purpose [19].

We are able to estimate the number of clock cycles for worst
and best case execution as we know the clock cycle overhead
of the accelerator invocation, the clock frequency ratio to
the host processor and the shortest and longest path of our
FSM. Furthermore, we define an architecture-specific penalty
for memory accesses. Along with these heuristic, we are able
to estimate the speedup of the accelerator in question. If the

results do not meet the constraints specified as compilation
parameters, the accelerator is rejected.

The final HDL implementation of the accelerator consists
of a loop specific and a target specific part. The former
implements a combination of FSM and datapath with a generic
register and memory interface. The latter adopts this interface
to a target specific host processor interface, e.g. a certain pe-
ripheral bus architecture. For example on Zynq, the accelerator
is integrated as AXI peripheral module into the system.

E. Application Modification

The final step of our workflow modifies the original code in
order to call the synthesized accelerators from the application.
We use an abstract calling scheme from the applications point
of view. This decouples the code patching from the actual
communication protocol. Therefore, each accelerator invoca-
tion is wrapped by a generated function. Its implementation
is emitted as C code and provides input and output arguments
for data transfer between application and accelerator. In our
implementation, this function determines the base address of
the called accelerator, writes input values to registers, starts
the accelerator and reads back output values on return.

The call to that wrapper function is placed preceding the
BB of the original loop header, as depicted in Figure 5.
It shows the original and modified GIMPLE graphs of the
loop in fun3() (Listing 2). The inserted variables tmp.9
and tmp.16 provide the return values from hardware. They
correspond to the original loop exit variables a.6 and a.7
respectively. To properly retain control flow in case of multiple
loop exits, the accelerator always returns bb_idx, which
denotes the basic block of the original loop the exit condition
occurred in. This value is evaluated by inserted conditional
branches directing control flow to the corresponding BB after
the original software loop. This bypass is inserted between
the wrapper function call and the original loop header. Pre-
serving the original loop enables fall-through to software
execution. Resource allocation and sharing techniques can be
then applied, since the application is still functional in case
no accelerator is currently available.

The presented calling scheme requires inserting a few GIM-
PLE instructions only while providing the whole flexibility of
C for implementing the actual hardware access. This further
manifests when targeting platforms running a full-blown OS,
such as Linux on the Zynq platform. Such systems require
invocation of device drivers for accessing the underlying
hardware, which could be rather complex. Furthermore, the
wrapper function could be modified or extended by arbitrary
user code with little effort. This especially enables debugging
of the accelerator call using additional code or even break-
points.

V. EVALUATION

The evaluation presented in this section pursues three dif-
ferent goals, namely, (i) test the prototype of our seamless
programming flow on a sample application, (ii) show the gen-
erality of our approach by applying it to arbitrary unmodified
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Figure 5. (A) Original GIMPLE Graph; (B) Modified GIMPLE graph with
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code, and (iii) analyze the challenges posed by today’s hybrid
platforms for automated accelerator generation (Section VI).

A. Line of Sight

The operability of our approach was demonstrated with a
2D line-of-sight algorithm which determines whether a line
intersects a square by iteratively checking each point on the
line. Our GCC workflow transforms the main loop of this
algorithm into an FSM with 10 states. The generated interface
used 11 input registers and one output register in order to
exchange data with the accelerator.

Our prototype was implemented on a ZedBoard running
Arch Linux. The ARM processor was clocked at 666 MHz,
while the accelerator operated at 333 MHz. Both components
were connected via a GP AXI port. Using an HP port would
not have improved performance, since we have not yet imple-
mented accelerator controlled memory access. We tested our
implementation using random input data to eliminate run time
dependencies on the data. To prove correctness, we compared
the results calculated in software with those calculated by the
accelerator hardware. Table I shows the execution times of
the accelerator and software-only version. The overhead of
an accelerator call is ≈ 2.4µs. This value is composed of a
relatively small amount for the inserted software instructions
and a larger amount for data transfer. This is due to the latency
of 14 accelerator clock cycles for each AXI register read or
write operation.

Further, we compared our results with LegUp HLS. As
LegUp has special requirements in order to perform automated
HW/SW partitioning, we run their HLS compiler stand-alone
on the portion of C code that was identified as accelerator by
our toolflow. The resulting FSM has 3 states and runs at a
maximum speed of 170 MHz as indicated by Xilinx ISE syn-

Table I
EXAMPLE ACCELERATOR EXECUTION TIMES AND CALL OVERHEAD

Maximum
Clock Rate

FSM
States

Execution
Time

Relative
Performance

Software 666 MHz – 62µs 1.00

Hardware 333 MHz 10 126µs 0.49

LegUp† 170 MHz 3 74µs 0.83

†Estimation based on synthesis results using Xilinx ISE

thesis results. This comparison shows that our HLS approach
requires improvement but also that even established HLS tools
hardly outperform the ARM processor. In Section VI it is
discussed whether single problem speedup is required at all
to gain overall system speedup.

We could demonstrate the generation of a complete and
correct working HW/SW implementation from plain C with-
out user intervention. This example shows that patching on
GIMPLE level is a viable approach for seamless accelerator
integration.

B. MiBench

In order to demonstrate the generality of our approach
we compiled MiBench [20]. This embedded benchmark suite
addresses real world problems and contains code from six
different application domains. For this test we considered all
accelerators found and did not apply any estimation of the
expected speedup.

Due to limits in the current implementation, which are
further discussed in Section VI, we could not implement
and run the accelerated applications. However, the results
in Table II clearly prove the generality of our approach.
We are able to find and synthesize a reasonable number
of accelerators from unmodified code of various application
domains. Furthermore, our tests demonstrate the stability of
the tool flow while analyzing a large, arbitrary codebase.

Table II
ACCELERATORS SYNTHESIZED FROM MIBENCH

Application
Domain

Benchmark/ Application
Library

Accelerators Translation
Units

Network patricia 4 1
dijkstra 2 2

Consumer

lame 5 17
jpeg 79 49
tiff-v3.5.49 149 44
mad-0.14.2b 44 35

Office

libsphinx2 39 45
ispell 1 3
stringsearch 11 5
ghostscript 80 51

Automotive bitcount 2 8
basicmath 1 5

Telecomm.
FFT 3 3
gsm 23 24
CRC32 1 1

Security pgp 107 42
sha 9 2

Σ 550 Σ 337
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VI. RESULTS DISCUSSION

With our results we have shown that, firstly, our approach is
valid. It can generate a working application with an attached
accelerator not requiring any user interaction. Secondly, we are
able to find a reasonable number of accelerators in arbitrary,
unmodified code of real-world applications.

Currently, our approach is limited by our basic HLS algo-
rithm and missing support for multiple accelerators. The focus
of our work is in the GCC-plugin infrastructure that allows to
transparently compile C code. Advances in HLS algorithms
can be either integrated later, or we could call an existing
HLS solution from within the GCC infrastructure.

Supporting multiple accelerators is a precondition for the
evaluation of complex application scenarios. Since our ap-
proach wraps accelerator calls by a C-function, we plan to
implement a device driver that is able to handle an arbitrary
number of accelerators.

While the limitations previously mentioned do not hinder
basic evaluation, exploring complex application scenarios is
not feasible yet. Particularly we were not able to run any of
the MiBench test cases, even though the suite offers large
potential for acceleration as shown in Table II.

On platforms like Zynq, in terms of speedup, one challenge
remains: One has to generate hardware running on the FPGA
that outperforms the highly optimized ARM core featuring,
e.g., conditional instructions and out-of-order execution. We
believe that increasing single-accelerator performance by im-
proved HLS or higher clock rates is not the only way to gain
overall application speedup. Instead, acceleration potentially
could be achieved by increasing thread level parallelism rather
than execution speed of a single task. This is a truism since
processor vendors moved towards multicore architectures. Uti-
lizing multiple accelerators simultaneously leads from pseudo-
parallelism to real task level parallelism beyond the number of
present CPU cores. Such a system-level solution may provide
a speedup even with single accelerators running slower than
the CPU. Furthermore, with dedicated accelerators, it is to
expect that energy-efficiency would also increase, which has
to be confirmed by future work.

VII. CONCLUSION

We presented a GCC-based workflow for accelerator gen-
eration and integration. It performs automatic HW/SW par-
titioning by synthesizing frequently executed loops to HDL.
For seamless interfacing, the program code is patched on an
abstract level not depending on target platform or accelerator
interface. The whole process is neither demanding HDL skills
from the user nor requiring knowledge about the underlying
platform. The proposed workflow has been validated by im-
plementing a working example on a Zynq platform.

Furthermore, a complex codebase has been compiled
to demonstrate the generality of our toolflow. More than
500 accelerators could be generated from the sources of
MiBench [20]. This complex example was not evaluated on the
hardware platform due to current limitations of our workflow
mentioned in Section VI.

VIII. CURRENT AND FUTURE WORK

To overcome current limitations we work on implementing
memory access for accelerators using the ACP available on
Zynq devices as well as on full integration of an arbitrary
number of accelerators into the OS using a device driver.
Finally we want to bundle generated hardware in form of
bitfiles with the application binary. This allows instant loading
and execution of any accelerated application.

Beyond that, future work addresses improvements in HLS,
in particular integrating with existing HLS approaches, and the
migration to partial reconfiguration. HLS improvements may
include exploiting more GCC-internal optimizations by mov-
ing hardware generation after the last GIMPLE optimization
pass.
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Abstract— The well known method  C-Slow Retiming (CSR) 
can  be  used  to  automatically  convert  a  given  CPU  into  a 
multithreaded CPU with independent threads. These CPUs are 
then  called  streaming  or  barrel  processors.  System  Hyper 
Pipelining (SHP) adds a new flexibility on top of CSR by allowing 
a dynamic number of threads to be executed and by enabling the 
threads  to  be  stalled,  bypassed  and  reordered.  SHP  is  now 
applied on the programming elements (PE) of a coarse-grained 
reconfigurable  architecture  (CGRA).  By  using  SHP,  more 
performance can be achieved per PE. Fork-Join operations can 
be implemented on a PE using the flexibility provided by SHP to 
dynamically  adjust  the  number  of  threads  per  PE.  Multiple 
threads can share the same data locally, which greatly reduces 
the data traffic load on the CGRA's routing structure. The paper 
shows the results of a CGRA using SHP-ed RISC-V cores as PEs 
implemented on a FPGA.

Keywords—System  Hyper  Pipelining,  Symmetrical  Multi-
Processing,  Simultaneous  Multi-Threading,  Coarse-Grained  
Reconfigurable Architecture, FPGA

I.  INTRODUCTION

It  takes  a  certain  time  to  execute  a  CPU  instruction. 
Pipelining is used to improve the execution speed of a program 
on  a  single  CPU.  Instruction  dependencies  are  handled  by 
using stall  signals. C-Slow Retiming (CSR) uses pipelining to 
multiply the functionality of a CPU, automatically generating 
a  multithreaded  CPU.  This  is  a  fundamentally  different 
outcome  compared  to  what  is  known  when  designs  are 
pipelined.  CSR  is  known  since  the  60's  and  outlined  by 
Leiserson  et  al.  in  [1].  System  Hyper  Pipelining  (SHP) 
improves CSR to enable more threads to be dynamically scaled 
on  a  multithreaded  CPU  and  fits  perfectly  on  FPGA 
technologies. SHP was first introduced by Strauch in [2]. 

At  least  two  common  problems  for  Multi-Processor 
System-On-Chips  (MPSoC),  Network-on-Chips  (NoCs)  and 
coarse-grained  reconfigurable  architectures  (CGRA)  can  be 
identified. These are software (SW) partitioning challenges and 
potential data routing bottlenecks. In [3], Galanis et al. show 
the challenges to partition critical software parts on CGRAs. 
Various speedups can be achieved when the right method is 
applied.  Yongjoo  et  al.  propose  in  [4]  memory-aware 
application  mapping  to  improve  the  data  throughput  on 
CGRAs. The memory bandwidth optimization is discussed in 
[5] by Peng et al. Performance problems become even more 

critical when systems are mapped on FPGAs and applications 
need to be executed at a certain speed.

In  this  paper  a  Hyper  Pipelined  Reconfigurable 
Architecture (HPRA) is proposed, which demos improvements 
of the two aforementioned problems based on a CGRA. The 
key technology is System Hyper Pipelining, which generates 
multithreaded  programming  elements  (PE)  while  improving 
the performance per area factor at the same time. This enables 
for  example  a  higher  local  peak  performance  and  fork-join 
operations, which simplifies the software partitioning problem. 
It  also  offers  local  data  sharing,  which  reduces  the  risk  of 
generating  data  routing  bottlenecks.  The  proposed  HPRA 
system is compared to a CGRA which uses the same routing 
and PEs as the HPRA, but does not use SHP to improve the 
performance  of  the  PEs.  The  results  show  how  a  regular 
processor  array  can  benefit  from  using  SHP.  It  is  easy  to 
understand,  how  MPSoCs  and  NoCs  can  benefit  from  this 
approach as well.

SHP is outlined in Section 1. Related work to this paper is 
discussed in Section 2 before the novel SHP based architecture 
is introduced in Section 3. Results are given in Section 4. 

II. CSR AND SHP TECHNOLOGY 

Figure 1: a) Simplified single clock design. b) Applying CSR 
technique.

System  Hyper  Pipelining  (SHP)  has  been  introduced  by 
Strauch in [2]. This paper gives a 2-page introduction for the 
readers' convenience again. SHP is based on C-Slow Retiming 
(CSR). It  enhances  CSR with thread  stalling,  bypassing and 
reordering techniques by replacing the original registers of the 
design with memories and by adding a thread controller (TC). 
In the remainder of this paper, the word “thread” (T) is used 
synonym for the execution of a program or algorithm.

Copyright is held by the author/owner(s).
2nd InternationalWorkshop on FPGAs for Software Programmers
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Figure 2: a) SHP-ed design with thread controller, memories and 
CRs. b) Further improved SHP.

Figure 1a shows the basic structure of a sequential circuit 
with its inputs, outputs, combinatorial logic (CL) and original 
design registers (DR). The sequential circuit handles one thread 
T(1). Figure 1b shows the CSR technique. The original logic is 
sliced into C (here C=3) sections. This results in C functionally 
independent design copies T(C=1..3) which use the logic in a 
time sliced fashion. Each thread has its own thread index. For 
each design copy it now takes C “micro-cycles” to achieve the 
same  result  as  in  one  cycle  (called  “macro-cycle”)  of  the 
original  design.  The implemented  registers  are  called  “CSR 
Registers”, (CR) and are placed at different C-levels (CRn).

Figure  2a  shows  the  modifications  of  a  CSR-ed  design 
towards  SHP.  Assuming  the  DRs  are  now  replaced  by  a 
memory (M). The incoming design states / threads are stored at 
the relevant address (write pointer) based on the thread index. 
D  is  the  number  of  threads  which  the  memory  can  hold 
(memory  depth).  The  outgoing  thread  can  now  be  freely 
selected within D available threads (read pointer), except the 
threads already passing through the design logic.  A CSR-ed 
design has usually many shift registers. DRs are followed by a 
series of CR registers. In the SHP-ed version, many memory 
data  outputs  are  connected  to  CRs.  In  this  case,  the  shift 
registers at the outputs can be replaced by registers at the read 
address  inputs of the memories (Figure 2b).  The memory is 
sliced into individual sections (M0, M1, M2) and each section 
has  a  delayed  read  of  the  thread.  The  outputs  can  now  be 
directly connected to the relevant combinatorial logic and the 
shift registers can be removed. The same trick can be applied 
on the shift register chains at the inputs of the memory.

Fcsr = Forig * C * r C                                           (1)

0 Hz <= Ft <= Forig * r C              (2)

Fshp = Σ Ft <=  Fcsr                  (3)

We define Forig as the maximal clock rate of the original 
design.  The  maximal  speed  of  a  CSR-ed  design  can  be 
estimated  by using equation  1.  Fcsr  is  C times  the  original 
speed Forig reduced by a correction factor rC, which considers 
the  delay  inserted  on  the  critical  path  by  the  CRs.  r  is 
technology dependent.  Based on empirical  data,  r  is  roughly 
0.93 for a Virtex-6 FPGA and standard designs. In an SHP-ed 
design, a single thread can now run at any speed (over a long 
period) between 0 Hz (stalled) and Forig * r C (Equation 2). The 
maximal speed of a SHP-ed design Fshp is the sum of all active 
threads (Equation 3). Fshp cannot be greater than Fcsr.

Figure 3: Histogram of different scenarios (a-d) of running CSR and 
SHP.

Figure 3 shows the advantages of CSR and SHP over the 
original  design.  The  x-axis  shows  different  scenarios. 
Assuming a single CPU runs at 60MHz on an FPGA (Figure 
3a). It can be seen, how CSR improves the system performance 
of  the  original  system  implementation,  (Figure  3b).  When 
using CSR, the system performance is not necessarily limited 
by the critical path of the original design, but - for instance - by 
the switching limit of the FPGA (e.g. 250MHz) or the external 
memory access instead. 

There  are  two key observations when SHP is  used on a 
design.  First,  for  executing  multiple  programs  on  multiple 
CPUs (symmetrical multi-processing (SMP)) or for executing 
multiple  threads  on  a  CPU  (simultaneous  multi-threading 
(SMT)),  SHP  allows  a  more  efficient  usage  of  the  system 
resources.  It  adds  the  possibility  to  distribute  the  system 
performance over a minimum (C, Figure 3b), and a maximum 
(D, Figure 3c) set of design copies, whereas any solution in-
between can be realized (Figure  3c).  This load balancing is 
handled by a thread controller (TC).

Secondly, threads don't interact with each other. There is no 
register  dependency  between  the  individual  threads.  The 
runtime of each thread is therefore deterministic. The variable 
latency that  the execution per thread may experience due to 
different behavior in if-branches for instance is not an issue, 
because all threads work independent of each other. 

III. BASIC INTRODUCTION OF THE NOVEL ARCHITECTURE AND 
RELATED WORK

Figure 4: a) Standard CGRA with programming (PE) and routing 
elements (RE), b) High Performance Reconfigurable Structure with 

same REs but SHP-ed PEs.
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Before aspects of related published work on CGRAs and 
NoCs are  discussed,  a  first  overview of  the  proposed  novel 
architecture  is  given.  Figure  4  gives  an  overview  of  the 
proposed hyper pipelined reconfigurable architecture (HPRA). 
The given CGRA (Figure 4a) is based on a 2 dimensional array 
of logic clusters, whereas each cluster has one programming 
element  (PE)  and  one  routing  element  (RE).  The  HPRA 
(Figure 4b)  uses SHP to improve the performance per given 
area, by adding time as a 3rd dimension to generate multiple 
independent  PE-threads which use the original  PE in a time 
sliced fashion. 

Each PE uses System Hyper Pipelining to generate multiple 
threads which use the logic in a time sliced fashion. One thread 
still  runs  virtually  at  macro-cycle  (original)  speed.  The  PE 
itself  as  well  as  all  other  elements  (routing  element, 
memory,  ...)  are  clocked  at  the  C  times  faster  micro-cycle 
speed.  Therefore  the  speed  of  the  system is  not  necessarily 
dominated by the complexity of the datapath logic of the PE. 
The RE and the  PE still  run  synchronously  using  the  same 
clock,  but  it  takes  C  micro-cycles  to  execute  one  original 
macro-cycle cycle of one thread. 

The functional  units of the application which run on the 
CGRA are called submodules (SM). Their individual program 
code is mapped to individual PEs. A PE can execute code of 
different SMs. Multiple threads can share the same code.

Related work must be discussed specifically with regard to 
the architecture's routing concept and its 3D topology. A new 
CGRA routing concept is proposed by Metzner et al. in [6]. 
Their  proposed  Quattuor-Architecture  has  the  capability  of 
using direct  interconnects  locally,  within a task for fast  data 
exchange among the submodules, and global communication 
using messages beyond component boundary. It tries to find an 
optimal trade-off between CGRA and NoC concepts. CGRAs 
and FPGA overlays are essentially dataflow machines to fulfill 
high performance requirements. A survey on CGRAs is given 
by Tehre et al. in [7]. Alternative concepts can be based on bus 
systems such as NoCs, which exchange messages among cores, 
memories  and  peripherals,  all  of  which  are  connected  in  a 
network infrastructure on the chip. NoCs are usually provided 
as  a  2-dimensional  grid  with  routers  placed  at  intersections 
between  lines  and  columns  and  which  are  connected  to 
homogeneous PEs. A survey on real-time NoC architectures is 
given by Hesham et al. in [8].

It can be said, that SHP uses time as a 3rd dimension when 
using the logic in a time sliced fashion. A 3D programmable 
logic device  has  been developed by Tabula Inc.  which uses 
operational  time  expansion  [9]  to  increase  performance  per 
area. In contrast to SHP, the number of threads are fixed and 
individual threads cannot be stalled nor can their performance 
be  balanced.  Additionally,  the  logic  is  continuously 
reconfigured for each thread, which can be seen as a overhead 
and requires specific synthesis algorithms. 

Classical 3D stacked chips usually have problems such as 
that the  inter-layer  vias  are  limited  in  number,  and  the 
increased power density leads to high junction temperatures, as 
Gayasan et al. show in [10]. This interconnect bottleneck has 
an  impact  on  3D  NoCs. Tradeoffs  between  the  number  of 

nodes  utilized  in  the  third  dimension,  which  reduces  the 
average number of hops traversed by a packet, and the number 
of physical planes used to integrate the functional blocks of the 
network,  which  decreases  the  length  of  the  communication 
channel,  is  evaluated  for  both  the  latency  and  power 
consumption of a network by Pavlidis et al. in [11]. Through a 
detailed case study for k-ary-2-mesh networks Qian et al. have 
shown in [12] that transforming a 2D NoC into a 3D NoC may 
not improve the worst-case performance while improving  the 
average performance. 

It  will  be  demonstrated  in  this  paper,  that  SHP  has  a 
positive impact on the routing concept of a CGRA by locally 
sharing data, and that SHP which uses time as 3rd dimension 
has  benefits  over  3D  programmable  devices  and  stacked 
processor arrays.

IV. INTRODUCTION TO THE HYPER PIPELINED 
RECONFIGURABLE ARCHITECTURE

Figure 5: HPRA cluster based on routing element (gray background) 
and programming element.

This section discusses  the hyper pipelined reconfigurable 
architecture (HPRA). It is based on a two dimensional array of 
clusters  (CL),  whereas  each  CL  is  based  on  one  routing 
element (RE) and one programming elements (PE) as shown in 
Figure 5. It is also shown, how the data transfer in the system is 
accomplished and how the system can be partly re-configured 
during runtime. 

A. The  RISC-V based PE

The  PE  is  based  on  the  RISC-V  (RV)  instruction-set-
architecture (ISA) from Berkeley [13]. The implemented 32-bit 
version uses a simple RISC-V subset as well as multiply and 
(multi-cycle) division instructions (RISC-V32IM).

With C = 4 and D = 16 the following relative performance 
numbers can be estimated. If  less or equal to C threads are 
executed, then each thread can run at (rC = 0.934 =) 75% speed 
of the original design. If  the number of active threads (T) is 
greater than C, then the maximal system performance, which is 
(C * rC = 4 * 75% = ) 300% of the original design, is equally 
distributed over all Ts.

The system is memory limited when placed on an FPGA. 
Therefore certain trade-offs must be considered. The RAM of 
each PE (PE-RAM) is dynamically shared by instructions and 
data.  The  instructions  are  basically  a  list  of  (independent) 
program  sections  and  functions.  All  Ts  can  execute  any 
program  section  or  function  in  that  RAM  and  can  access 
(read/write) the complete RAM. Data can also be written by 
any other PE using a mechanism which is shown later. 

90



B. Stack Handling

Each  T  needs  its  own  stack  range,  which  generates  an 
immense memory overhead. Therefore all Ts share one single 
extra  stack  memory  (PE-STACK)  dynamically.  A  small 
register  based  translation-look-aside-buffer  (TLB)  uses  stack 
access information as well as the current thread ID from the 
thread  controller  to  enable  access  to  a  certain  stack  range. 
When the stack is full, a stack overflow is prevented by stalling 
the relevant threads until at least one other thread releases its 
section  in  the  stack  memory.  The  thread  controller 
continuously executes all active threads, which automatically 
generates a round-robin mechanism for the stack usage when 
an  overflow  happens.   This  mechanism  can  still  lead  to  a 
system stall in an extreme case. Therefore care must be taken 
when partitioning software on the individual PEs. The stack 
pointer register is set to 0 when a thread starts.

C. The Thread Controller

Each PE has a thread controller (TC). Each TC has special-
function-registers (SFR), by which the TC can be controlled. A 
thread (T) can be started simply by writing the T's start address 
to a specific address in the TC's SFR, called “Activate”. The 
TC then assigns the T to a specific slot (S) with has a specific 
slot ID (SID = {0, ..., D - 1}). If more than D threads should be 
started, a thread-overflow occurs. Therefore care must be taken 
when partitioning software on the individual PEs. A handshake 
mechanism must be implemented on the software layer.  The 
task runtime can vary when more than C threads are active. 
Multiple threads can share the same program.

A T can “kill” itself by writing (any data) to a specific SFR, 
called “Exit”. By doing that it frees the relevant S. A T cannot 
be killed by other Ts. A T can also be stalled. This means that 
the T's design state remains in the memory M (see section 1) 
and is not passed though the design logic. This allows other Ts 
to bypass. A T can be stalled by setting the relevant bit (=SID) 
to a specific SFR, called “Stall”. The T starts again if this bit is 
cleared  by  any  other  thread.  Because  the  SID  is  assigned 
dynamically,  a  certain  stalling  mechanism  must  be 
implemented in software. Each T can read its own SID.

To enable a fork-join program execution within one PE, the 
following mechanism is implemented. A set of Ts an be started 
from  a  single  main  T  (MT)  by  successively  writing  the 
individual start addresses of the Ts to be started to the TC's 
SFR called  “Activate  and  Count  (AC)”.  By  doing  that,  the 
number  of  Ts  called  (CT)  by  the  MT is  stored  in  the  AC 
register. Optionally the MT stalls itself after that process. Each 
CT saves  the  MT's  SID in  the  “forked  thread  register  FT”. 
When a CT is killed, it checks the FT and decrements the AC 
of the MT. If this number gets 0, the MT stalling bit is cleared 
by default  and the MT continues.  Alternatively the MT can 
read it's AC register to continue execution.

D. Data transfer

In  the  proposed  architecture,  each  PE  can  run  multiple 
threads (T). Individual Ts running on different PEs can forward 
data to each other using the complete HPRA's memory range. 
The same is true for each DMA engine, which is defined later. 
Data arriving at a routing element can either be forwarded to 

another cluster or to the PE's memory or TC. Due to the limited 
number  of  pages  for  this  paper,  this  mechanism cannot  be 
further elaborated on, but its implementation does not have a 
relevant impact on the achieved results shown at the end of this 
paper.

E. DMA Engine

To  increase  the  system's  throughput,  a  direct  memory 
access  engine (DMAE) is added to each PE. The DMAE has 
three SFR which can be programmed by each T. The DMASA 
register holds the start address of the source memory and the 
DMAL register the transfer length. The transfer is started by 
writing the target address of the DMA to the DMATA register. 
The DMAE can only be programmed when not active.

This  mechanism  enables  a  continuous  datastream 
throughout  the  system.  PEs  connected  to  a  system bus  can 
initiate a burst read on the system bus. Therefore data can be 
read from external using bursts. 

F. Configuration and partly reconfiguration during runtime

The  system  can  easily  be  configured  and  partly 
reconfigured during runtime. For that instructions have to be 
streamed through the system to the target RAM by using the 
relevant target address. This can also be done during runtime 
so  that  parts  of  the  applications  can  be  reprogrammed  / 
reconfigured. A thread is started by writing its start address to 
the relevant SFR of the TC. 

V. RESULTS

The proposed SHP based HPRA is now compared to the 
non SHP-ed CGRA using the same fast routing elements (RE) 
and  the  same  DMA  engine  (DMAE).  The  programming 
element  (PE)  is  based  on  a  3-stage  RISC-V32IM  (RV)  as 
defined in [14]. Both designs are mapped on a Virtex 6 LX75T 
(-3ff784).

A. Performance per Area Improvement

Table 1 compares the data of the original CGRA and the 
SHP-ed HPRA. The original  RV occupies  617 slices  (occS) 
and runs at 181 MHz, which results in a performance per area 
factor (PpA) of 0.29 MHz/occS. The SHP-ed RV (C=4, D=16) 
occupies 703 slices but achieves a performance of 549 MHz. 
The resulting PpA is 0.78 and is 266% of the original  RV's 
PpA.  Both  architectures  use  the  same  DMAE  so  that  the 
programming  element  (PE)  size  difference  basically  results 
from the different RV size. The routing elements (RE) are the 
same as well as the system support logic (SDRAM controller 
and system bridge). Both have a 4x4 implementation of PE/RE 
clusters,  whereas  one cluster  is  removed and replace  by the 
support logic

A higher mapping effort makes it possible that each design 
fits into the FPGA (maximal 11640 slices). The CGRA system 
with the original RV implementation achieves 2.715 GHz and 
a PpA of 0.23 MHz/occS. The HPRA's performance is much 
higher  (8.235  GHz)  and  its  PpA  is  203%  higher  (0.77 
MHz/occS) than the one of the CGRA. Thus, the HPRA can 
execute more threads and can achieve a 3.03-times higher 
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Table 1. Virtex 6 based implementation of alternative concepts.

Module Size [occS] Perf. [MHz] PpA [MHz/occS] Module Size [occS] Perf. [MHz] PpA [MHz/occS] dPpA [%]
RV 617 181 0.29 SHP-RV 703 549 0.78 266
PE 697 PE 781
RE 103 RE 103

Support 159 Support 159
CGRA 11634 2715 0.23 HPRA 11635 8235 0.77 303

Table 2. Local Peak Performance Using Matrix Multiplication

unit 4x4 5x5 6x6 7x7 8x8 9x9 10x10

RV ns 1039 1541 2144 2845 3646 4547 5547
SHP ns 153 202 259 330 412 505 608
Diff. % 670 762 829 863 886 901 912

Table 3. Application Partitioning Considerations

Implementation Threads per System Threads per Cluster Data Sharing per Cluster Performance per Cluster Performance Penalties
Single RV 15 1 no 181 MHz

SHP-ed RV min 60 (C = 4) 4 yes 549 MHz no
SHP-ed RV max 240 (D = 16) 16 yes 549 MHz Yes

system performance than the non SHP-ed CGRA version on 
the same FPGA.

B. Local Peak Performance Improvement

In this paper, the local peak performance (LPP) defines the 
runtime of  an algorithm based  on a local  data  set.  In  other 
words, LPP is the execution speed of a program only accessing 
data available  at  the PE's  memory and without  routing data 
through the system. A simple matrix multiplication algorithm 
is used for that.

Table  2  shows  the  LPP  for  matrix  multiplications  of 
different sizes, running on the original RV implementation and 
a  SHP-ed  RV  version.  The  SHP-ed  RV  can  use  fork-join 
techniques to run multiple threads in parallel. SHP allows the 
usage of up to D (here 16) threads. The SHP-ed RV's runtime 
outperforms  the  original  version  by  670% for  small  matrix 
multiplications (4x4) and 912% for larger ones (10x10).

C. Throughput Performance

It is assumed that the routing structure of a CGRA can be 
efficiently  pipelined.  The  proposed  system  hyper  pipelining 
technology is related to the programming element (here RISC-
V32IM). Therefore,  the routing structure of the two systems 
remains identical. Here a 4x4 system is used again, whereas 1 
cluster  is  replaced  by  system  logic  (SDRAM  interface  and 
system bridge). This results in 15 clusters.

Table  3  gives  an  overview  of  what  kind  of  aspects  are 
important  when  an  application  needs  to  be  partitioned  over 
multiple threads. The standard CGRA system using single RV 
implementation can run up to 15 threads. Threads cannot share 
data on a cluster and the algorithm execution speed per thread 
is 181 MHz. The proposed HPRA system using SHP-ed RVs 
can  run  efficiently  a  minimum  (min)  of  60  threads  (4  per 
cluster), whereas all threads on a cluster can share data locally. 
In  this  case,  each  thread  on  a  cluster  does  not  impact  the 
runtime of the 3 remaining threads on a cluster, so that each 
thread gets  its  maximum share (137 MHz) of the 549 MHz 
cluster-performance. The system can be completely or locally 

scaled for running up to 260 threads on the same FPGA (max). 
16 threads can be executed on a single cluster which can all 
share  data  locally.  Here  the  performance  of  each  thread  is 
affected, because only 549 MHz are available per cluster. The 
number of threads per cluster can be adapted dynamically.

VI. CONCLUSION

C-Slow Retiming is  a  known technique  to  turn a digital 
design into a multithreaded version. System Hyper Pipelining 
(SHP) adds more flexibility to the multithreading approach. In 
this paper, SHP is applied on the programming element (PE) of 
a coarse-grained reconfigurable architecture (CGRA). One of 
the  key  advantages  of  the  proposed  system  is  a  higher 
performance per area factor. The more concentric approach of 
running a flexible number of threads on a single PE improves 
system  level  aspects  like  local  peak  performance  and 
throughput  performance.  Individual  applications  can  overlap 
on PEs and can share data on the same RAM without moving 
them through the system. 

In  the  proposed  architecture  (8*16=)  96  threads  can 
communicate with a single PE, which itself can run up to 16 
individual  threads.  The  data  throughput  speed  is  higher 
compared to the execution time of a single instruction. Data 
routing  and  the  dynamic  memory  access  mechanism  are 
independent  of  the  PE's  program  execution.  The  various 
aspects  discussed  in  this  paper  can  easily  be  applied  on 
MPSoCs and NoCs.
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Abstract—The JUNIPER project is developing a framework
for the construction of large-scale distributed systems in which
execution time bounds can be guaranteed. Part of this work
involves the automatic implementation of input Java code on
FPGAs, both for speed and predictability. An important focus
of this work is to make the use of FPGAs transparent though
runtime co-design and partial reconfiguration. Initial results show
that the use of Java does not hamper hardware generation, and
provides tight execution time estimates. This paper describes an
overview the approach taken, and presents some preliminary
results that demonstrate the promise in the technique.

I. INTRODUCTION

Big Data is the term used for application requirements
that cannot be met using existing data processing techniques,
because of either the sheer scale of the input data, or the timing
requirements that are placed on the system. As a result, FPGAs
are starting to be deployed into data centres to exploit the large
parallelism and low latency that they can offer. However, effec-
tive use of FPGAs requires significant specialist knowledge; of
hardware description languages (HDLs), complex vendor tools,
and high-level synthesis (HLS) systems.

As a response to this, the JUNIPER project is developing
a framework for soft real-time Big Data systems that includes
technology for automatic translation of user Java code to FPGA
hardware. Rather than simply “fast enough”, JUNIPER views
real-time to mean that the correctness of the data is dependent
on both its value and the time by which it is delivered.
Hardware translation is used because hardware components
have tighter bounds on their worst case response time, and
are very useful for the construction of more predictable sys-
tems. Also FPGA implementations tend to display greater
performance than their Java equivalents. Unlike systems that
focus on using high-level synthesis to create a highly-optimised
hardware implementation of a key system component, the key
contribution of the JUNIPER approach is that it aims to allow
totally transparent FPGA acceleration through the use of online
configuration and partial dynamic reconfiguration.

The input language to the JUNIPER system is either stan-
dard Java 8, or Java written with the Real-Time Specification
for Java (RTSJ). The use of Java is motivated by its common
use in the large-scale data processing domain. Systems such as
Hadoop are written in Java, and Spark and Storm are written

This work has received funding from the European Union’s Seventh
Framework Programme under grant agreement FP7-ICT-611731

partially in Java, and are implemented on the Java Virtual
Machine (JVM). JUNIPER is also compatible with other JVM
languages, such as Clojure and Scala.

II. PROGRAMMING MODEL

The JUNIPER API is a Java 8 API for supporting large-
scale computing environments, such as clusters (“cloud com-
puting”) and high-performance computers. The full details of
the JUNIPER model are outside of the scope of this extended
abstract and are detailed in existing work [1], [2]. In brief,
JUNIPER allows the programmer to split their code into units
which may be deployed into separate compute nodes. Inter-
node communications, data flow, and storage, are automatically
handled by the API layer.

In addition to this, JUNIPER programs can use a concept
called Locales. Rather than placing threads and data manually
using affinities, a locale is a software-level element which is
used to inform the JVM and platform that the threads and
data inside a locale will be tightly-coupled and so should be
located as closely together as possible. These bundled threads
and data items are then dynamically mapped to subsets of the
target architecture, and for the purpose of this work may also
be deployed to FPGAs. Online FPGA compilation and partial
reconfiguration allows the system to search for a suitable
mapping. This helps to solve a common problem with general-
purpose acceleration of a high-level language in which it can
be difficult to determine the parts of the application that should
be accelerated for the largest gain.

III. IMPLEMENTATION STRATEGY

The JUNIPER toolflow is shown in figure 1. The input Java
(or other JVM language) is translated to C for native compila-
tion by a real-time JVM called JamaicaVM [3]. This approach
supports both standard Java and real-time Java, and allows
for more predictable real-time behaviour (including real-time
garbage collection). A tool called caicos then manages the
creation of complementary hardware (FPGA) and software
(host) projects. On the hardware side, the high-level synthesis
tool Vivado HLS is used to translate from C to HDL.

A key requirement of this work is that use of the FPGA
must be transparent to the programmer. Before the translated
C can be passed to Vivado HLS, significant rewriting must be
performed in order to ensure that efficient hardware is pro-
duced. First, all global memory accesses (the Java heap) from
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Fig. 1. The hardware and software flows in JUNIPER.

the translated C must be rewritten into AXI bus transactions.
The use of pointers is avoided to ensure efficient synthesis.
Secondly, because abstract or interface method calls may
dynamically dispatch to different implementations based on the
type of the called object, JamaicaVM and caicos perform static
analysis to determine exactly which subset of methods may
be called to minimise multiplexer use. Finally, untranslatable
software (VM calls, native methods, etc.) are translated into
a ‘system call’ in which the hardware calls back to the host
processor over the PCIe bus to execute the required function.

The only limitation on input software is that exceptions are
currently not supported inside translated methods because of
the hardware complexity they introduce. It is possible to reduce
this through static analysis, but this remains further work.

IV. DYNAMIC ACCELERATION

Due to space constraints on the FPGA, most of the time
it will not be possible to offload all code to the FPGA
simultaneously. Whilst JUNIPER allows the designer to pick a
fixed subset for hardware implementation, it is also developing
a dynamic acceleration approach to make the acceleration
transparent to the developer through the use of online com-
pilation, synthesis, and partial reconfiguration.

In the target domain of commercial large scale data sys-
tems, applications tend to be permanently running and can
afford to dedicate a compute node to performing speculative
synthesis and implementation. JUNIPER uses this to explore
the design space automatically, and uses dynamic reconfigura-
tion to swap new test bitfiles in to the running application. This
is facilitated by extensive online monitoring that is provided by
the JUNIPER framework. Once an improved design is found,
the system will update and redeploy itself, perhaps onto fewer
computer nodes if it can still guarantee its required response
times.

V. PRELIMINARY RESULTS

As this represents work in progress only relatively small
filters and methods have been tested, however some interesting
preliminary results have already been discovered. Table I
shows comparisons between hand-written C and the JUNIPER
approach (on a Xilinx Virtex 7 series device). It can be seen
that the use of Java generally only imposes a small logic area

TABLE I. COMPARISON OF HAND-DEVELOPED C AND JUNIPER
(NAÏVE SYNTHESIS, WITHOUT MANUAL OPTIMISATION)

Hand-developed C + HLS Java + JamaicaVM + HLS
Function LUTs Latency LUTs Latency

Vector sum 113 507 175 511
Collatz evaluation 293 278 383 282
MD5 hash 1675 3463 272 676
FIR filter 298 183 283 121

and latency overhead (due to additional bus logic and memory
access routines).

The table also shows one benefit of the approach. The
MD5 result shows a huge improvement in both speed and area
from using Java over C. This is because all of these numbers
are before any hand-optimisation of synthesis directives. In
the case of MD5, manual unrolling and function inlining can
reduce the hand-developed C version to be similar in size and
speed to the JamaicaVM version, but this requires specialist
knowledge and is not transparent to the user. A lot of the
overhead is in the C version’s use of pointers, something which
is removed by the restricted stack-machine of Java bytecode.

In all of these results we can see that the generated
hardware has a specific latency value, rather than a range. With
fixed inputs we can be certain down to the clock cycle about
how long a piece of hardware will take to execute. Uncertainty
can be introduced through memory latency or bus/network
latency as with software implementations. These results show
that there is potential for the JUNIPER acceleration approach.
Evaluation of large-scale applications is currently being under-
taken.

VI. CONCLUSION

The JUNIPER platform is an approach to building the next
generation of Big Data systems which can provide design-
time guarantees about their response times and performance
metrics. To do this, the platform includes a range of real-time
technologies, including transparent integration of FPGAs for
speed and predictability.

Initial results show that the use of Java to accelerate
software does not add significant overheads, and in fact
when code becomes more complex and ‘C-like’ the JUNIPER
toolflow can give better results unless manual expertise is then
applied. It also provides tighter execution time estimates. This
paper describes the work currently under way, the approach
being developed, and presents some preliminary results that
demonstrate the promise in the technique.
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