
A Highly Efficient and Comprehensive Image
Processing Library for C++-based High-Level
Synthesis

M. Akif Özkan, Oliver Reiche, Frank Hannig, and Jürgen Teich
Hardware/Software Co-Design, Friedrich-Alexander University Erlangen-Nürnberg
FSP, September 7, 2017, Ghent

Motivation

Opportunity: FPGAs have a great potential for improving throughput per watt

Challenge: Hardware design is time consuming and needs expertise

Solution: High Level Synthesis (HLS) for providing the best suitable
architecture from a traditional C++ code

Motivation

Opportunity: FPGAs have a great potential for improving throughput per watt

Challenge: Hardware design is time consuming and needs expertise

Solution: High Level Synthesis (HLS) for providing the best suitable
architecture from a traditional C++ code

What would be better is asking to Siri;
“Siri, could you please design a ConvNet accelerator for my 200 dollars FPGA!”

Unfortunately, we are not there yet!

Motivation

Opportunity: FPGAs have a great potential for improving throughput per watt

Challenge: Hardware design is time consuming and needs expertise

Solution: High Level Synthesis (HLS) for providing the best suitable
architecture from a traditional C++ code

What would be better is asking to Siri;
“Siri, could you please design a ConvNet accelerator for my 200 dollars FPGA!”
Unfortunately, we are not there yet!

Motivation

Opportunity: FPGAs have a great potential for improving throughput per watt

Challenge: Hardware design is time consuming and needs expertise

Solution: High Level Synthesis (HLS) for providing the best suitable
architecture from a traditional C++ code

Programming methodologies for other platforms are not there yet as well:

GPUs: map, gather, and scatter operations with a different language, i. e.,
OpenCL, CUDA

Multi-core CPUs: OpenMP or Cilk Plus for proper thread level parallelism for
programming Xeon Phi architectures

CPUs: explicit vectorization

Motivation

Opportunity: FPGAs have a great potential for improving throughput per watt

Challenge: Hardware design is time consuming and needs expertise

Solution: High Level Synthesis (HLS) for providing the best suitable
architecture from a traditional C++ code

Maybe it is the time to reconsider abstractions for FPGA design?

• Computational parallel patterns: i. e. gather, scatter
• Domain Specific Languages: HIPAcc, Halide, Polymage
• Hardware favorable library objects for essential algorithmic instances

Motivation

Opportunity: FPGAs have a great potential for improving throughput per watt

Challenge: Hardware design is time consuming and needs expertise

Solution: High Level Synthesis (HLS) for providing the best suitable
architecture from a traditional C++ code

“Best” is hard to reach:

A design space exploration is needed!

• Definition of the “best” depends on the design objectives (i. e. speed, area)
• Multiple alternative architectures exist for the same algorithmic instances
• The Pareto-optimal hardware architecture of an algorithmic instance for given

design objectives might not be the optimal for different scheduling
specifications (i. e. filter size, parallelization factor)

Efficiency is important when the cost is considered!

Motivation

Opportunity: FPGAs have a great potential for improving throughput per watt

Challenge: Hardware design is time consuming and needs expertise

Solution: High Level Synthesis (HLS) for providing the best suitable
architecture from a traditional C++ code

“Best” is hard to reach: A design space exploration is needed!
• Definition of the “best” depends on the design objectives (i. e. speed, area)
• Multiple alternative architectures exist for the same algorithmic instances
• The Pareto-optimal hardware architecture of an algorithmic instance for given

design objectives might not be the optimal for different scheduling
specifications (i. e. filter size, parallelization factor)

Efficiency is important when the cost is considered!

Motivation

Opportunity: FPGAs have a great potential for improving throughput per watt

Challenge: Hardware design is time consuming and needs expertise

Solution: High Level Synthesis (HLS) for providing the best suitable
architecture from a traditional C++ code

Not all bad news:
• HLS became sophisticated enough for data path design
• Different speed constraints are possible
• Support for deploying FPGAs in a heterogeneous system

Outline

Analysis of the Domain

Proposed Image Processing Library

A Deeper Look Into the Library

Evaluation and Results

Analysis of the Domain

Image Processing Applications

We can define three characteristic data operations in image processing
applications:

Point Operators:
Output data is determined by single input data

Local Operators:
Output data is determined by a local region of the in-
put data (stencil pattern-based calculations)

Global Operators:
Output data is determined by all of the input data

input image output image

input image output image

input image output image

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 2

Image Processing Applications

A great portion of image processing applications can be described as task graphs
of point, local, and global operators:

dx

dy

sxy

sy

gxy

gy

hc
input output

sx gx

An example task graph for Harris Corner Detection
(square: local operator, circle: point operator)

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 3

Coarse-Grained Parallelism

Memory bandwidth limits can be reached by processing multiple pixels per cycle

input output

{dy, dy, dy, dy}

{dx, dx, dx, dx}

{sy, sy, sy, sy}

{sx, sx, sx, sx}

{gxy, gxy, gxy, gxy}

{gx, gx, gx, gx}

{gy, gy, gy, gy}

{sxy, sxy, sxy, sxy} {hc, hc, hc, hc}

input output

{dy, dy, dy, dy}

{dx, dx, dx, dx}

{sy,
sy,
sy,
sy}

{sx,
sx,
sx,
sx}

{gxy, gxy, gxy, gxy}

{gx, gx, gx, gx}

{gy, gy, gy, gy}

{sxy,
sxy,
sxy,
sxy}

{hc,
hc,
hc,
hc}

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 4

Image Border Handling

• a fundamental image processing issue for local operators
• should be considered together with coarse-grained parallelization

0 0 0 1 2 3 3 3

0 0 0 1 2 3 3 3

0 0 0 1 2 3 3 3

4 4 4 5 6 7 7 7

8 8 8 9 10 11 11 11

12 12 12 13 14 15 15 15

12 12 12 13 14 15 15 15

12 12 12 13 14 15 15 15

(a) clamp

5 4 4 5 6 7 7 6

1 0 0 1 2 3 3 2

1 0 0 1 2 3 3 2

5 4 4 5 6 7 7 6

9 8 8 9 10 11 11 10

13 12 12 13 14 15 15 14

13 12 12 13 14 15 15 14

9 8 8 9 10 11 11 10

(b) mirror

10 9 8 9 10 11 10 9

6 5 4 5 6 7 6 5

2 1 0 1 2 3 2 1

6 5 4 5 6 7 6 5

10 9 8 9 10 11 10 9

14 13 12 13 14 15 14 13

10 9 8 9 10 11 10 9

6 5 4 5 6 7 6 5

(c) mirror-101

c c c c c c c c

c c c c c c c c

c c 0 1 2 3 c c

c c 4 5 6 7 c c

c c 8 9 10 11 c c

c c 12 13 14 15 c c

c c c c c c c c

c c c c c c c c

(d) constant

Common border handling modes.

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 5

Proposed Image Processing Library

Description of an Application Data Flow Graph

#define W 1024 // Image Width
#define H 1024 // Image Height
#define pFactor 1 // Parallelization factor

// Data type descriptions
...

// Local operator definitions
localOp <W, H, pFactor , ..., MIRROR > sobelX , sobelY;

localOp <W, H, pFactor , ...> gaussX , gaussY , gaussXY;

pointOp <W, H, pFactor , ...> square , mult , harrisCorner;

// Hardware top function
void harris_corner(hls::stream <inVecDataType > &out_s ,

hls::stream <outVecDataType > &in_s) {
#pragma HLS dataflow

// Stream definitions
hls::stream <VecDataType1 > in_sx , in_sy , ...;
hls::stream <VecDataType2 > ...;
...

// Data path construction
sobelX.run(Dx_s , in_sx);
sobelY.run(Dy_s , in_sy);

square.run(Mx_s , Dx_s1 , square_kernel);
square.run(My_s , Dy_s1 , square_kernel);
mult.run(Mxy_s , Dy_s2 , Dx_s2 , mult_kernel);

gaussX.run(Gx_s , Mx_s , gauss_kernel);
gaussY.run(Gy_s , My_s , gauss_kernel);
gaussXY.run(Gxy_s , Mxy_s , gauss_kernel);

harrisCorner.run(out_s , Gxy_s , Gy_s , Gx_s ,
threshold_kernel);

}

dx

dy

sxy

sy

gxy

gy

hcinput output

sx gx

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 6

Specification of a Data Path

Data path is a regular C++ function

point operator reads from an input data element

local operator reads from a window (2D array)

outDataType datapath(inDataType in_d){
#pragma HLS inline

return in_d * in_d;
}

Datapath of a multiplication (point operator).

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 7

Specification of a Data Path

Data path is a regular C++ function

point operator reads from an input data element

local operator reads from a window (2D array)

outDataT datapath(inDataT win[KernelH][KernelW]){
#pragma HLS inline

unsigned sum =0;
for(uint j=0; j<KernelH; j++){
#pragma HLS unroll

for(uint i=0; i<KernelW; i++){
#pragma HLS unroll

sum += win[j][i];
}

}
return (outDataT)(sum / (KernelH*KernelW));

}

Datapath of a mean filter (local operator).

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 7

Parallelizable Data Types

Objective: parallelize DFG according to a preprocessor constant (pFactor)

Challenge: data types depend on pFactor

Solution: pre-processor macros for data type definitions

newDataType(DataBeatType , DataType , pFactor)

specification of a parallelizable data type

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 8

Parallelizable Data Types

Objective: parallelize DFG according to a preprocessor constant (pFactor)

Challenge: data types depend on pFactor

Solution: pre-processor macros for data type definitions

newDataType(DataBeatType , DataType , pFactor)

specification of a parallelizable data type

// Data = DataBeat[index]
EXTRACT(Data , DataBeat , index);

partially reading from a data beat

// DataBeat[i] = Data
ASSIGN(DataBeat , Data , index);

updating a data beat from smaller data types

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 8

Interconnecting Streams

Vivado HLS streams are FIFO buffers, which

+ stalls the execution of the next node when there is no data

+ can have a depth that is higher than one data element

=> can be used as interconnecting streams between the nodes of a DFG

hls::stream <DataBeatType > repl1 , repl2 , in;

Definition of a stream in Vivado HLS.

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 9

Interconnecting Streams

Vivado HLS streams are FIFO buffers, which

+ stalls the execution of the next node when there is no data

+ can have a depth that is higher than one data element

=> can be used as interconnecting streams between the nodes of a DFG

hls::stream <DataBeatType > repl1 , repl2 , in;

Definition of a stream in Vivado HLS.

Output stream of a node must be replicated when
multiple following nodes are connected

splitStream(repl2 , repl1 , in);

replicating one stream to multiple streams

LAPLACIAN PYRAMID

dec_512 rec_512

img_in

img_out

II = 1

dec_256 rec_256

II = 4

dec_128 rec_128

II = 16

dec_64 rec_64

II = 64

dec_32 rec_32

II = 256

lp0

lp1

lp2

lp3

lp4

g1

g2

g3

g4

g5

r4

r3

r2

r1

cpy_o_512

down_512

cpy_d_512

up_512

diff_512

img_in

g1

lp0

up_256

sumlp1

r2

r1i0_1i0_2

g1

g1_1

g0

dx

dy

q
sxy

sy

gxy

gy

hcinput output

dx

dy

sx

sxy

sy

gx

gxy

gy

hcinput outputin

dx

dy

sx

in’

dx’

dy’

sx’

in’’

dx’’

sx gx

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 9

Operator Descriptions

Local Operator: template class

localOp <ImageWidth , ImageHeight ,
KernelWidth , KernelHeight ,
DataBeatType , pFactor ,
DataType , MIRROR > locObObj;

locOpObj.run(outStream , inStream ,
datapath);

Point Operator: template function

pointOp <pFactor >(outStream , inStream , dataPath);

Global Operator: Custom functions with global or static variables/arrays

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 10

Custom Node Descriptions: Stencil-based Applications

Sliding Window

f f f f

… …

…

…

…

…

Line
 Buffer

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 11

Custom Node Descriptions: Stencil-based Applications

Sliding Window

f f f f

… …

…

…

…

…

Line
 Buffer

for(size_t i = 0; i < ImageSize/pFactor; y++)
{

// ...
dataBeatIn << inStream;
for(v = 0; v < pFactor; v++){

#pragma HLS unroll
EXTRACT(pixIn , dataBeatIn , v);
// ...
ASSIGN(dataBeatOut , pixOut , v);

}
outStream << dataBeatOut;

}

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 11

Custom Node Descriptions: Memory Instances

Supported specifications:

Line Buffer:

LineBuffer <KernelHeight ,
ImageWidth ,
DataBeatType > linebuf;

linebuf.shift(col2swin , newDataBeat ,
colIm);

Sliding Window:

SlidingWindow <KernelWidth , KernelHeight ,
DataBeatType , v, DataType
MIRROR > sWin;

//Shift
swin.shift(col);
swin.shift(col , leftBorderFlags ,

rightBorderFlags);

// Read
DataBeatT pix = swin.get(j, i);
DataBeatT pix = swin.win_out[j][i];

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 12

A Deeper Look Into the Library

Software Architecture: Local Operator Class

Border Handling Policy Loop Coarsening Policy

Type-0

Type-1

Type-2

Local Operator Line Buffer Sliding Window

composition

Best Architecture Selection

getControlPolicy()
getBorderPolicy()
getCoarseningPolicy()

inheritance

Fetch And Calc

Calc And Pack

Control Policy

Type-0

Type-1

Type-2

An object relationship diagram for our proposed library.

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 13

Best Architecture Selection

Facilitate high performance without sacrificing high productivity with a compile time
automatic architecture selection.

input : w , h, borderMode, v , kout, kin, designGoal
output: BorderHandlingPattern, CoarseningArch

1 func selectParetoOptimala(BorderHandlingPattern, CoarseningArch,
2 w, h, borderMode, v , kout, kin, designGoal)
3 rw = bw/2c
4 if borderMode = UNDEFINED then
5 if kout < kin ·h then
6 CoarseningArch← Calc and Pack
7 else
8 CoarseningArch← Fetch and Calc
9 end

10 BorderHandlingPattern← none
11 else
12 if rw · (kin ·h− kout + 1)< v · (kin ·h− kout) then
13 CoarseningArch← Calc and Pack
14 else
15 CoarseningArch← Fetch and Calc
16 end
17 if borderMode = (CLAMP ∨ CONSTANT) then
18 BorderHandlingPattern← Type-1
19 else

// borderMode = (MIRROR ∨ MIRROR-101)

20 if (designGoal = speed) ∨ ((rw + 1)MUX[2]−MUX[rvw + 1]−MUX[2]< 0) then
21 BorderHandlingPattern← Type-2
22 else
23 BorderHandlingPattern← Type-1
24 end
25 end
26 end
27 end

aM. A. Özkan et al., “Hardware Design and Analysis of Efficient Loop Coarsening and Border Handling for Image Processing”, in 28th IEEE
International Conference on Application-specific Systems, Architectures and Processors (ASAP), (Seattle), Jul. 2017.

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 14

Best Architecture Selection

Facilitate high performance without sacrificing high productivity with a compile time
automatic architecture selection.

Coarsening Selection
a seemless selection based on template parameters

Border Handling Selection
border handling architectures optimize different types of resources
a default design objective simplifies the specification

// designObjective LessLUTMoreRegister
// designObjective LessRegisterMoreLUT
localOp <..., designObjective > localOprtr;

Specification of a local operator with a design objective

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 14

RTL Level Optimizations

HLS tools mostly benefit from considerations at register-transfer level.
• arbitrary bit widths for the variables
• exploiting bit-specific properties for conditional assignments
• temporary registers updated in each iteration for describing wire assignments
• exploiting similarities in expressions through flags
• exploiting the temporal locality of the both control flow and data path

// Update Image indexes and isColRead
if(isImageWidthPowerOf2 == true){

colIm = clkTick[BW_col -1:0];
rowIm = clkTick[BW_row+BW_col -1: BW_col];
isColRead = (colIm == imageWidth -1);

}
else{

isColRead=false;
colIm ++;
if(colIm == imageWidth){

colIm =0; rowIm ++;
isColRead=true;

}
}

Bit-level optimizations in the control flow

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 15

RTL Level Optimizations

HLS tools mostly benefit from considerations at register-transfer level.
• arbitrary bit widths for the variables
• exploiting bit-specific properties for conditional assignments
• temporary registers updated in each iteration for describing wire assignments
• exploiting similarities in expressions through flags
• exploiting the temporal locality of the both control flow and data path

// Update Image indexes and isColRead
if(isImageWidthPowerOf2 == true){

colIm = clkTick[BW_col -1:0];
rowIm = clkTick[BW_row+BW_col -1: BW_col];
isColRead = (colIm == imageWidth -1);

}
else{

isColRead=false;
colIm ++;
if(colIm == imageWidth){

colIm =0; rowIm ++;
isColRead=true;

}
}

Bit-level optimizations in the control flow

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 15

RTL Level Optimizations

HLS tools mostly benefit from considerations at register-transfer level.
• arbitrary bit widths for the variables
• exploiting bit-specific properties for conditional assignments
• temporary registers updated in each iteration for describing wire assignments
• exploiting similarities in expressions through flags
• exploiting the temporal locality of the both control flow and data path

// Update Image indexes and isColRead
if(isImageWidthPowerOf2 == true){

colIm = clkTick[BW_col -1:0];
rowIm = clkTick[BW_row+BW_col -1: BW_col];
isColRead = (colIm == imageWidth -1);

}
else{

isColRead=false;
colIm ++;
if(colIm == imageWidth){

colIm =0; rowIm ++;
isColRead=true;

}
}

Bit-level optimizations in the control flow

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 15

RTL Level Optimizations

HLS tools mostly benefit from considerations at register-transfer level.
• arbitrary bit widths for the variables
• exploiting bit-specific properties for conditional assignments
• temporary registers updated in each iteration for describing wire assignments
• exploiting similarities in expressions through flags
• exploiting the temporal locality of the both control flow and data path

// Program control flags
if(isImageWidthPowerOf2 == true ||

(BorderPattern != UNDEFINED)){
initLatPASS = isRow0 && isXBndEnd;
imREAD = !(isRowRead && isColRead);

}else{
initLatPASS = (clkTick > initialLatency);
imREAD = (clkTick < imageSize);

}

Efficient usage of flags in the control flow

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 15

RTL Level Optimizations

HLS tools mostly benefit from considerations at register-transfer level.
• arbitrary bit widths for the variables
• exploiting bit-specific properties for conditional assignments
• temporary registers updated in each iteration for describing wire assignments
• exploiting similarities in expressions through flags
• exploiting the temporal locality of the both control flow and data path

isXleftBnd [0] = isXrightBnd[kRx -1];
for(int i = kRx - 1; i > 0; i--){

isXrightBnd[i] = isXrightBnd[i-1];
}
isXrightBnd [0] = isColRead;

Efficient usage of flags in the control flow

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 15

Control Path of a Local Operator

Optimizations at register-transfer level make an HLS code cumbersome, but can
be hidden within a good software architecture.

local_operator_loop:
for(size_t clkTick =0;

clkTick <= initialLatency+imageSize;
clkTick ++){

#pragma HLS pipeline ii=1

// Update Control Flags (1/2)
control.UpdateBeforeShift(clkTick);

// Run Data -path
outPixel = datapath(control.SlidingWin);

// Write Result
if(control.initLatPASS == true){

out_s.write(data_out);
}

// Get New Input
if(control.imREAD == true){

in_s >> data_in;
}

// Shift Line Buffers and Sliding Window
control.shift(data_in);

// Update Control Flags (2/2)
control.UpdateAfterShift(clkTick);

}

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 16

Evaluation and Results

Comparison of Loop Coarsening Architectures

70 75 80 85 90 95

0

5,000

10,000

w = 11

w = 11

w = 3

w = 3

12
4

8

16

32

64

124816
32

64

LUT

FF

C&P
F&C

HLS estimation results of the proposed coarsening architectures (target
clock frequency is 200 MHz, and no border handling is applied)

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 17

Proposed Library vs. HIPAcc

Application Framework CF SLICE LUT FF DSP BRAM SRL CPimp Latency

Mean Filter
proposed

1 106 206 409 0 4 0 2.96 1050633
32 1698 4722 6073 0 32 1 4.16 32841

Hipacc
1 151 253 581 0 4 1 2.77 1052684
32 2078 5008 8487 0 32 121 2.70 33866

Laplace
proposed

1 469 1126 1762 0 8 17 3.90 1050634
32 12235 40157 33440 0 116 2 4.85 32842

Hipacc
1 581 11307 2057 0 8 0 3.88 1052684
32 12430 41349 36514 0 116 1404 4.85 33868

Sobel Edge
proposed

1 1113 2809 4942 8 4 85 3.94 1049687
32 26716 76667 137267 256 14 2560 4.73 33878

Hipacc
1 1138 2899 5028 8 4 85 3.82 1050632
32 27770 83470 145072 256 32 2565 4.87 33878

Harris Corner
proposed

1 763 1731 2528 14 10 38 3.88 1049633
32 8293 20017 31399 363 39 998 4.34 33825

Hipacc
1 936 2125 3086 15 10 72 4.15 1050637
32 14739 37424 56691 480 80 1081 4.89 33837

Bilateral
proposed

1 6049 15691 18535 190 2 811 4.26 1049763
8 38776 119123 135711 1520 4 5604 4.87 131364

Hipacc
1 15875 43859 50453 558 4 2638 4.48 1052967
2 29669 85228 96159 1116 4 4307 4.84 526630

M. Akif Özkan | Hardware/Software Co-Design | A Highly Efficient and Comprehensive Image Processing Library for C++-based High-Level Synthesis FSP’17 18

https://github.com/akifoezkan/implib-hls

Thanks for listening.
Any questions?

Title A Highly Efficient and Comprehensive Image Processing Library for
C++-based High-Level Synthesis

Speaker M. Akif Özkan, akif.oezkan@fau.de

https://github.com/akifoezkan/implib-hls

References I

[1] M. A. Özkan, O. Reiche, F. Hannig, and J. Teich, “Hardware Design and
Analysis of Efficient Loop Coarsening and Border Handling for Image
Processing”, in 28th IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP), (Seattle), Jul. 2017.

Related Hardware Architectures

Loop Coarsening Architectures

shift input

f f f f

shift

(a) Fetch And Calc (F&C)

shift input

f f f f

(b) Calc And Pack (C&P)

C&P uses fewer registers than F&C when
rw · (kin ·h− kout + 1)< v · (kin ·h− kout) satisfies

where rw : radius of the width, h: height, v : pFactor, k : bitwidth

Column Selection Architectures: Mirror border mode

Type-0:

- not resource efficient

+ full flexibility for all the border
modes

Type-1:

+ resource efficient for a great portion
of design space

Type-2:

+ fastest architecture

+ Pareto-optimal depending on w , v ,
and technology mapping

input

input

64 input5

56 4

	Analysis of the Domain
	Proposed Image Processing Library
	A Deeper Look Into the Library
	Evaluation and Results

